Preview

Health, Food & Biotechnology

Advanced search

Potential for the use of Lactobacilli bacteriocins in clinical practice (a systematic review of the subject field)

Abstract

Introduction. Lactic acid bacteria are actively used in the food and pharmaceutical industries due to their ability to produce technologically valuable substances that are important for food production. Also, some lactic acid bacteria are used for the prevention and treatment of various diseases due to their probiotic properties. The interest in the genera Lactiplantibacillus and Lactobacillus is due to their ability to synthesize bacteriocins, which have antimicrobial activity that leads to the suppression of the growth of extraneous microflora. The possibility of using bacteriocins as an alternative to antibiotics in the fight against pathogenic microflora, including food products, is discussed. However, the lability of bacteriocins limits their widespread use.

The purpose is to conduct a critical analysis of current literature data to determine the main mechanisms of action of bacteriocins, directions of their use in clinical practice and in therapeutic nutrition, taking into account specific examples, and to evaluate possible sources of isolation of new highly active bacteriocin-producing strains.

Materials and Methods. As part of the study, a systematic analysis of the scientific literature for the period from 2014 to 2024 was carried out in accordance with the PRISMA guidelines. An initial keyword search revealed 127 scientific publications. As a result of a two-stage screening after applying the inclusion and exclusion criteria, as well as removing duplicates, 89 articles were selected for in-depth critical analysis, which formed the basis of this systematic review. The search for relevant materials was carried out in the databases PubMed, the Russian Science Citation Index (RSCI) and others.

Results and Discussion. 89 scientific articles were critically analyzed. Potential applications of lactobacillus bacteriocins in clinical practice and therapeutic nutrition have been identified: the fight against infections of the gastrointestinal tract; the use of bacteriocins as a substitute for antibiotics, as well as as an antibiotic agent. The most well-known bacteriocin is nisin, which is synthesized by Lactococcus lactis and is widely used as a preservative in the food industry. However, bacteria such as Lactiplantibacillus plantarum, Lactobacillus gasseri, Lactobacillus crispatus, and Latilactobacillus sakei are bacteriocinogenic and can also be successfully used. The current data on the characteristics and mechanism of action of bacteriocins are systematized. A correlation has been shown between the course of the corresponding inflammatory diseases of the gastrointestinal tract, the dose of antibiotics used, and the intake of purified bacteriocins or probiotic microorganisms producing bacteriocins in situ. The existing obstacles to the rapid introduction of bacteriocins into clinical practice are considered, which is an urgent issue due to the increasing number of antibiotic-resistant strains of opportunistic and pathogenic infectious agents. The possibility of using bacteriocins as alternatives to antibiotics and/or drugs that reduce the dose of antibiotics used, and/or drugs for the treatment and prevention of diseases of the gastrointestinal tract has been proven. The main promising sources of the isolation of highly active bacteriocin-producing strains have been identified. Further research areas include targeted screening of highly active bacteriocin-producing lactobacillus strains with probiotic properties, and the development of a scheme to reduce the dose of antibiotics through the use of the obtained bacteriocins.

About the Authors

Marya S. Kanochkina
Russian Biotechnological University (BIOTECH University); Limited Liability Company «Microbial Nutrients Immunocorrectors»
Russian Federation

Cand. Sc. (Engineering), fields of activity: biotechnology, BAS production technology, microbiota, pre-, pro- and autoprobiotics for humans and animals. SPIN code: 2584-6474, AuthorID: 1087397



Ludmila A. Ivanova
Russian Biotechnological University (BIOTECH University)
Russian Federation

Russian Biotechnological University (ROSBIOTECH), Doctor of Engineering, Professor, Professor of the Department of Biotechnology and Bioorganic Synthesis.



Ilya R. Sokolov
Russian Biotechnological University (BIOTECH University)
Russian Federation

Russian Biotechnological University (ROSBIOTECH), graduate student of the Department of Biotechnology and Bioorganic Synthesis.



Anastasiya D. Konovalova
Russian Biotechnological University (BIOTECH University)
Russian Federation

Russian Biotechnological University (ROSBIOTECH), student of the Department of Biotechnology and Bioorganic Synthesis.



Oleg N. Levin
University of Tyumen
Russian Federation

student of University of Tyumen



References

1. Andriukov, B. G., & Nedashkovskaya, E. P. (2018). Entering the post-antibiotic era: promising strategies for finding new alternative strategies to combat infectious diseases. Health. Medical ecology. Science. No. 3 (75). pp. 36-50. https://doi.org/10.5281/zenodo.1488026

2. Guseva, T. B., Soldatova, S. Yu., & Karanian O. M. (2021). Organoleptic evaluation of canned milk products: features of conducting and interpreting the results. A specialist in food products. No. 10. pp. 726-729. https://doi.org/10.33920/igt-01-2110-01

3. Zaslavskaya, M. I., Makhrova, T. V., Alexandrova, N. A., Ignatova, N. I. & et al. (2019). Prospects of using normal microbiota bacteriocins in antibacterial therapy (review). Modern medical technologies. No. 3. pp. 136-145. https://doi.org/10.17691/stm2019.11.3.17

4. Miralimova, Sh. M., Ogai, D. K., Kutlieva, G. D., Ibragimova, A.D. & et al. (2016). Synthesis of a bacteriocin-like substance by Lactobacillus plantarum 42 strain isolated from sauerkraut. Scientific results of biomedical research. No. 3. pp. 56-63. https://doi.org/10.18413/2313-8955-2016-2-3-56-63

5. Soldatova, S.Yu., Butova, S.N., & Golovanova, K.Yu. (2016). Development of a formulation of a biologically active additive for normalization of the gastrointestinal tract. Bulletin of Science and Practice. No. 5 (6). pp. 27-33. https://doi.org/10.5281/zenodo.54823

6. Tikhonova, E. V., & Shlenskaya, N.M. (2021). A review of the subject field as a method for synthesizing scientific data. Storage and processing of agricultural raw materials. No. 3. pp. 11-25. https://doi.org/10.36107/spfp.2021.257

7. Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O.P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology and Biotechnology. Vol. 100(7). P. 2939-2951. https://doi.org/10.1007/s00253-016-7343-9

8. Amer, S. A., Abushady, H. M., Refay, R. M., & Mailam, M. A. (2021). Enhancement of the antibacterial potential of plantaricin by incorporation into silver nanoparticles. Journal, genetic engineering and biotechnology. Vol. 19(1). https://doi.org/10.1186/s43141-020-00093-z

9. Avaiyarasi, N. D, Ravindran, A. D, Venkatesh, P., & Arul, V. (2016). In vitro selection, characterization and cytotoxic effect of bacteriocin of Lactobacillus sakei GM3 isolated from goat milk. Food Control. Vol. 69. P. 124‐133. https://doi.org/10.1016/J.FOODCONT.2016.04.036

10. Babatunde, D. A., & Oladejo, P. O. (2014). Identification of lactic acid bacteria isolated from Nigerian foods. Medical importance and comparison of their bacteriocins activities. Journal of Natural Sciences Research. Vol. 4. P. 76–87.

11. Boyanova, L., Gergova, G., Markovska, R., & Yordanov, D. (2017). Bacteriocin-like inhibitory activities of seven Lactobacillus delbrueckii subsp. bulgaricus strains against antibiotic susceptible and resistant Helicobacter pylori strains. Letters in applied microbiology. Vol. 65(6). P. 469–474. https://doi.org/10.1111/lam.12807

12. Belguesmia, Y., Naghmouchi, K., Chihib, N.E., & Drider, D. (2011). Class IIa Bacteriocins: Current Knowledge and Perspectives. Prokaryotic Antimicrobial Peptides.P. 171–195. https://doi.org/10.1007/978-1-4419-7692-5_10

13. Bengtsson, T., Selegård, R., Musa, A., Hultenby, K. & et al. (2020). Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiotics. Scientific reports. Vol. 10(1). https://doi.org/10.1038/s41598-020-60570-w

14. Bastos, Mdo. C., Coelho, M. L., & Santos, O. C. (2015). Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology (Reading). Vol. 161(4). P. 683–700. https://doi.org/ 10.1099/mic.0.082289-0.

15. Baindara, P., Korpole, S., & Grover, V. (2018). Bacteriocins: perspective for the development of novel anticancer drugs. Applied microbiology and biotechnology. Vol. 102(24). P. 10393–10408. https://doi.org/10.1007/s00253-018-9420-8

16. Bamgbose, T., Habiba, I. A., & Anvikar, A. R. (2021). Bacteriocins of Lactic Acid Bacteria and Their Industrial Application. Current Topic in Lactic Acid Bacteria and Probiotics. Vol. 7. P. 1–13. https://doi.org/10.35732/ctlabp.2021.7.1.1

17. Cesa-Luna, C., Alatorre-Cruz, J. M., Carreño-López, R., Quintero-Hernández, V. & et al. (2021). Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Polish journal of microbiology. Vol. 70(2). P. 143–159. https://doi.org/10.33073/pjm-2021-020

18. Cotter, P. D., Ross, R. P, & Hill, C. (2013). Bacteriocins - a viable alternative to antibiotics? Nature reviews. Microbiology. Vol. 11(2). P. 95-105. https://doi.org/10.1038/nrmicro2937

19. Cintas, L. M., Casaus, M. P, Herranz, C., Nes, I. F., & Hernández, P. E. (2001). Review: Bacteriocins of Lactic Acid Bacteria. Food Science and Technology International. Vol. 7. P. 281-305.

20. Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A. & et al. (2018). Functions and emerging applications of bacteriocins. Current opinion in biotechnology. Vol. 49. P. 23–28. https://doi.org/10.1016/j.copbio.2017.07.011

21. De Giani, A., Bovio, F., Forcella, M., Fusi, P., Sello, G, & Di Gennaro, P. (2019). Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cells. AMB Express. Vol. 9(1). https://doi.org/10.1186/s13568-019-0813-6

22. De Vuyst, L., & Leroy, F. (2007). Bacteriocins from lactic acid bacteria: production, purification, and food applications. Journal of molecular microbiology and biotechnology. Vol. 13(4). P. 194–199. https://doi.org/10.1159/000104752

23. Di Cagno, R., De Angelis, M., Calasso, M., & Vincentini O. (2010). Quorum sensing in sourdough Lactobacillus plantarum DC400: Induction of plantaricin A (PlnA) under co-cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco-2 cells. PROTEOMICS. Vol. 10(11). P. 2175–2190. https://doi.org/10.1002/pmic.200900565

24. Dicks, L. M. T., Dreyer, L., Smith, C., & van Staden, A. D. (2018). A Review: The Fate of Bacteriocins in the Human Gastro-Intestinal Tract: Do They Cross the Gut-Blood Barrier? Frontiers in microbiology. Vol. 9. https://doi.org/10.3389/fmicb.2018.02297

25. Duraisamy, S., Balakrishnan, S., Ranjith, S., Husain, F. & et al. (2020). Bacteriocin-a potential antimicrobial peptide towards disrupting and preventing biofilm formation in the clinical and environmental locales. Environmental science and pollution research international. Vol. 27(36). P. 44922–44936. https://doi.org/10.1007/s11356-020-10989-5

26. Eyler, R. F., & Shvets, K. (2019). Clinical Pharmacology of Antibiotics. Clinical journal of the American Society of Nephrology: CJASN. Vol. 14(7). P. 1080–1090. https://doi.org/10.2215/CJN.08140718

27. Flynn, J., Ryan, A., & Hudson, S. P. (2021). Pre-formulation and delivery strategies for the development of bacteriocins as next generation antibiotics. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik. Vol. 165. P. 149–163. https://doi.org/10.1016/j.ejpb.2021.05.015

28. Fu, T., Yu, M., Yan, Q., & Liu, Y. M. (2018). Bacteriocin Isolated from Lactobacillus Rhamnosus L34 Has Antibacterial Effects in a Rabbit Model of Infection After Mandible Fracture Fixation. Medical science monitor: international medical journal of experimental and clinical research. Vol. 24. P. 8009–8014. https://doi.org/10.12659/MSM.909630

29. Field, D., Fernandez de Ullivarri, M., Ross, R. P., & Hill, C. (2023). After a century of nisin research - where are we now? FEMS microbiology reviews. Vol. 47(3), fuad023. https://doi.org/10.1093/femsre/fuad023.

30. Favaro, L., Barretto Penna, A. L., & Todorov, S. D. (2014). Bacteriocinogenic LAB from cheeses – Application in biopreservation. Trends in Food Science & Technology. Vol. 41(1). P. 37–48. https://doi.org/10.1016/j.tifs.2014.09.001

31. Garcia-Gutierrez, E., O'Connor, P. M, Colquhoun, I. J, Vior, N. M. & et al. (2020). Production of multiple bacteriocins, including the novel bacteriocin gassericin M, by Lactobacillus gasseri LM19, a strain isolated from human milk. Applied microbiology and biotechnology. Vol. 104(9). P. 3869–3884. https://doi.org/10.1007/s00253-020-10493-3

32. Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E. & et al. (2021). Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals. Vol. 11. https://doi.org/10.3390/ani11040979

33. Huang, F., Teng, K., Liu, Y., Cao, Y. & et al. (2021). Bacteriocins: Potential for Human Health. Oxidative medicine and cellular longevity. https://doi.org/10.1155/2021/5518825

34. Hassan, M. U., Nayab, H., Rehman, T. U., Williamson, M. P. & et al. (2020). Characterisation of Bacteriocins Produced by Lactobacillus spp. Isolated from the Traditional Pakistani Yoghurt and Their Antimicrobial Activity against Common Foodborne Pathogens. BioMed research international. https://doi.org/10.1155/2020/8281623

35. Han, L., & Madduri, K. (2013). Exploring antibiotic biosynthesis: Leo Vining's insights lead to new strategies in the quest for 'The 10 × '20 Initiative. The Journal of antibiotics. Vol. 66(7). P. 365–369. https://doi.org/10.1038/ja.2013.46

36. Huemer, M., Mairpady Shambat, S., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO reports. Vol. 21(12). https://doi.org/10.15252/embr.202051034

37. Iqbal, Z., Ahmed, S., Tabassum, N., Bhattacharya, R. & et al. (2021). Role of probiotics in prevention and treatment of enteric infections: a comprehensive review. Biotechnology. Vol. 11(5). https://doi.org/10.1007/s13205-021-02796-7

38. Jiang H., Tang X., Zhou Q., Zou J. [et al.]. Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II // Applied microbiology and biotechnology. 2018. Vol. 102(17). P. 7465–7473. DOI: https://doi.org/10.1007/s00253-018-9182-3.

39. Johnson, E. M., Jung, D. Y., Jin, D. Y., Jayabalan, D. R. & et al. (2018). Bacteriocins as food preservatives: Challenges and emerging horizons. Critical reviews in food science and nutrition. Vol. 58(16). P. 2743–2767. https://doi.org/10.1080/10408398.2017.1340870

40. Jiang, Y., Xin, W., Yang, L., Ying, J. & et al. (2022). A novel bacteriocin against Staphylococcus aureus from Lactobacillus paracasei isolated from Yunnan traditional fermented yogurt: Purification, antibacterial characterization, and antibiofilm activity. Journal of Dairy Science. Vol. 105 (3). P. 2094–2107. https://doi.org/10.3168/jds.2021-21126

41. Jacquier, H., Vironneau, P., Dang, H., Verillaud, B. & et al. (2020). Bacterial biofilm in adenoids of children with chronic otitis media. Part II: a case-control study of nasopharyngeal microbiota, virulence, and resistance of biofilms in adenoids. Acta oto-laryngologica. Vol. 140(3). P. 220–224. https://doi.org/10.1080/00016489.2020.1718749

42. Keikha, M. (2020). Is there a relationship between Helicobacter pylori vacA i1 or i2 alleles and development into peptic ulcer and gastric cancer? A meta-analysis study on an Iranian population. New Microbes New Infect. Vol. 36. https://doi.org/10.1016/j.nmni.2020.100726

43. Kumariya, R., Garsa, A. K., Rajput, Y. S., & Sood, S. K. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial pathogenesis. Vol. 128. P. 171–177. https://doi.org/10.1016/j.micpath.2019.01.002

44. Lima, L. M., Silva, B. N. M. D., Barbosa, G., & Barreiro, E. J. (2020). β-lactam antibiotics: An overview from a medicinal chemistry perspective. European journal of medicinal chemistry. Vol. 208. https://doi.org/10.1016/j.ejmech.2020.112829

45. Lelis, C. A, de Carvalho, A. P. A, & Conte Junior, C. A. A. (2021). Systematic Review on Nanoencapsulation Natural Antimicrobials in Foods: In Vitro versus In Situ Evaluation, Mechanisms of Action and Implications on Physical-Chemical Quality. International journal of molecular sciences. Vol. 22(21). https://doi.org/10.3390/ijms222112055

46. Lee, D. H., Kim, B. S., & Kang, S. S. (2020). Bacteriocin of Pediococcus acidilactici HW01 Inhibits Biofilm Formation and Virulence Factor Production by Pseudomonas aeruginosa. Probiotics and antimicrobial proteins. Vol. 12(1). P. 73–81. https://doi.org/10.1007/s12602-019-09623-9

47. Lakshminarayanan, B., Guinane, C. M., O'Connor, P. M., Coakley, M. & et al. (2013). Isolation and characterization of bacteriocin-producing bacteria from the intestinal microbiota of elderly Irish subjects. Journal of applied microbiology. Vol. 114(3), P. 886–898. https://doi.org/10.1111/jam.12085

48. Lonnie, O. (1989). Ingram. Ethanol Tolerance in Bacteria // Critical Reviews in Biotechnology. P. 305-319. https://doi.org/10.3109/07388558909036741

49. Lindgren, S. E., & Dobrogosz, W. J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS microbiology reviews. Vol. 7(1-2). P.149–163. https://doi.org/10.1111/j.1574-6968.1990.tb04885.x

50. Markowiak, P., & Śliżewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. Vol. 9(9). https://doi.org/10.3390/nu9091021

51. Meade, E., Slattery, M. A., & Garvey, M. (2020). Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics Vol. 9(1). https://doi.org/10.3390/antibiotics9010032

52. Mokoena, M. P. (2017). Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Molecules Vol. 22(8). https://doi.org/10.3390/molecules22081255

53. Mørtvedt, C. I., Nissen-Meyer, J., Sletten, K., & Nes, I. F. (1991). Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Applied and environmental microbiology. Vol. 57(6). P. 1829–1834. https://doi.org/ 10.1128/AEM.57.6.1829-1834.1991

54. Michael, C. A., Dominey-Howes, D., & Labbate, M. (2014). The antimicrobial resistance crisis: causes, consequences, and management. Frontiers in public health. Vol. 2. https://doi.org/10.3389/fpubh.2014.00145

55. Mahdi, L. H., Jabbar, H. S., & Auda, I. G. (2019). Antibacterial immunomodulatory and antibiofilm triple effect of Salivaricin LHM against Pseudomonas aeruginosa urinary tract infection model. International Journal of Biological Macromolecules. Vol. 134. P. 1132–1144. https://doi.org/10.1016/j.ijbiomac.2019.05.181

56. Meng, F., Liu, Y., Nie, T., Tang, C. & et al. (2022). Plantaricin A, Derived from Lactiplantibacillus plantarum, Reduces the Intrinsic Resistance of Gram-Negative Bacteria to Hydrophobic Antibiotics. Applied and environmental microbiology. Vol. 88(10), e0037122. https://doi.org/10.1128/aem.00371-22

57. Noroozi, E., Mojgani, N., Motevaseli, E., Modarressi, M. H. & et al. (2019). Physico-chemical and cytotoxic analysis of a novel large molecular weight bacteriocin produced by Lactobacillus casei TA0021. Iranian journal of microbiology. Vol. 11(5). P. 397–405.

58. Parada, J. L., Caron, C. R., Medeiros, A. B. P., & Soccol, C. R. (2007). Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Brazilian Archives of Biology and Technology. Vol. 50(3). P. 512-542. https://doi.org/10.1590/S1516-89132007000300018

59. Pu, J., Hang, S., Liu, M., & Chen, Z. A. (2022). Class IIb Bacteriocin Plantaricin NC8 Modulates Gut Microbiota of Different Enterotypes in vitro. Frontiers in nutrition. Vol. 9. https://doi.org/10.3389/fnut.2022.877948

60. Peng, S., Song, J., Zeng, W., Wang, H. & et al. (2021). A broad-spectrum novel bacteriocin produced by Lactobacillus plantarum SHY 21–2 from yak yogurt: Purification, antimicrobial characteristics and antibacterial mechanism. LWT. Vol. 142. https://doi.org/10.1016/j.lwt.2021.110955

61. Ren, Z. H., Hu, C. Y., He, H. R., Li, Y. J. & et al. (2020). Global and regional burdens of oral cancer from 1990 to 2017: Results from the global burden of disease study. Cancer communications. Vol. 40(2-3). P. 81–92. https://doi.org/10.1002/cac2.12009

62. Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry science. Vol. 82(4). P. 632–639. https://doi.org/10.1093/ps/82.4.632

63. Ratsep, M., Naaber, P., Koljalg, S., Smidt, I. & et al. (2014). Effect of Lactobacillus plantarum strains on clinical isolates of Clostridium difficile in vitro. Journal of Probiotics Health. Vol. 2: 119.

64. Soltani, S, Hammami, R, Cotter, P. D, Rebuffat, S. & et al. (2021). Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Review. Vol. 45(1). doi: https://doi.org/10.1093/femsre/fuaa039

65. Sharma, B. R., Halami, P. M., & Tamang, J. P. (2021). Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods. Food science and biotechnology. Vol. 31(1). P. 1–16. https://doi.org/10.1007/s10068-021-00986-w

66. Schwartz, D. J., Langdon, A. E., & Dantas, G. (2020). Understanding the impact of antibiotic perturbation on the human microbiome. Genome medicine. Vol. 12(1). https://doi.org/10.1186/s13073-020-00782-x

67. Swe, P. M., Cook, G. M., Tagg, J. R., & Jack, R. W. (2009). Mode of action of dysgalacticin: a large heat-labile bacteriocin. The Journal of antimicrobial chemotherapy. Vol. 63(4). P. 679–686. https://doi.org/10.1093/jac/dkn552

68. Singh, V. P. (2018). Recent approaches in food bio-preservation - a review. Open veterinary journal. Vol. 8(1). P. 104–111. https://doi.org/10.4314/ovj.v8i1.16

69. Surendran, Nair M., Amalaradjou, M. A., & Venkitanarayanan, K. (2017). Antivirulence Properties of Probiotics in Combating Microbial Pathogenesis. Advances in applied microbiology. Vol. 98. P. 1–29. https://doi.org/10.1016/bs.aambs.2016.12.001

70. Soomro, A.H, Musad, T., Sammiand, S., & Rathore, H.A. (2007). Comparison of different methods for detection of antimicrobial activity of Lactobacillus spp. Pakistan Journal of Zoology. Vol. 39(4). P. 265–268.

71. Todorov, S. D. (2009). Bacteriocins from Lactobacillus plantarum – Production genetic organization. Brazilian Journal of Microbiology. Vol. 40. P. 209–221.

72. Todorov, S. D., de Paula, O. A. L., Camargo, A. C., Lopes, D. A., & et al. (2018). Combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis or EDTA for controlling biofilm development by Listeria monocytogenes. Revista Argentina de microbiologia. Vol. 50(1). P. 48–55. https://doi.org/10.1016/j.ram.2017.04.011

73. Todorov, S. D., Wachsman, M., Tomé, E., Vaz-Velho, M. & et al. (2023). Plasmid-Associated Bacteriocin Produced by Pediococcus pentosaceus Isolated from Smoked Salmon: Partial Characterization and Some Aspects of his Mode of Action. Probiotics and antimicrobial proteins. https://doi.org/10.1007/s12602-023-10059-5

74. Tsai, T. L., Li, A. C., Chen, Y. C., Liao, Y. S. & et al. (2015). Antimicrobial peptide m2163 or m2386 identified from Lactobacillus casei ATCC 334 can trigger apoptosis in the human colorectal cancer cell line SW480. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. Vol. 36(5). P. 3775–3789. https://doi.org/10.1007/s13277-014-3018-2

75. Therdtatha, P., Tandumrongpong, C., Pilasombut, K., Matsusaki, H. & et al. (2016). Characterization of antimicrobial substance from Lactobacillus salivarius KL-D4 and its application as biopreservative for creamy filling. SpringerPlus. Vol. 5(1), 1060. https://doi.org/10.1186/s40064-016-2693-4

76. Umu, Ö. C., Bäuerl, C., Oostindjer, M., Pope, P. B. & et al. (2016). The Potential of Class II Bacteriocins to Modify Gut Microbiota to Improve Host Health. PLoS One. Vol. 11(10). https://doi.org/10.1371/journal.pone.0164036

77. Wang, H., Xie, Y., Zhang, H., & Jin, J. (2020). Quantitative proteomic analysis reveals the influence of plantaricin BM-1 on metabolic pathways and peptidoglycan synthesis in Escherichia coli K12. PLoS One. Vol. 15(4). https://doi.org/10.1371/journal.pone.0231975

78. Wayah, S. B., & Philip, K. (2018). Purification, characterization, mode of action, and enhanced production of Salivaricin mmaye1, a novel bacteriocin from Lactobacillus salivarius SPW1 of human gut origin. Electronic Journal of Biotechnology. Vol. 35. P. 39–47. https://doi.org/10.1016/j.ejbt.2018.08.003

79. Wayah, S. B., & Philip, K. (2018). Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microbial cell factories. Vol. 17(1). https://doi.org/10.1186/s12934-018-0972-1

80. Wang, Z., Zhang, Y., Chen, C., Fan, S. & et al. (2023). A novel bacteriocin isolated from Lactobacillus plantarum W3-2 and its biological characteristics. Frontiers in nutrition. Vol. 9. https://doi.org/10.3389/fnut.2022.1111880

81. Xiangpeng, H., Zhang, M., Peng, J., Wu, J. (2023). Purification and characterization of a novel bacteriocin from Lactiplantibacillus plantarum Z057, and its antibacterial and antibiofilm activities against Vibrio parahaemolyticus. LWT. Vol. 173. https://doi.org/10.1016/j.lwt.2022.114358

82. Youssefi, M., Tafaghodi, M., Farsiani, H., Ghazvini, K. & et al. (2021). Helicobacter pylori infection and autoimmune diseases; Is there an association with systemic lupus erythematosus, rheumatoid arthritis, autoimmune atrophy gastritis and autoimmune pancreatitis? Journal of microbiology, immunology, and infection. Vol. 54(3). P. 359–369. https://doi.org/10.1016/j.jmii.2020.08.011

83. Zawistowska-Rojek, A., Kociszewska, A., Zaręba, T., & Tyski, S. (2022). New Potentially Probiotic Strains Isolated from Humans - Comparison of Properties with Strains from Probiotic Products and ATCC Collection. Polish journal of microbiology. Vol. 71(3). P. 395–409. https://doi.org/10.33073/pjm-2022-035

84. Zawistowska-Rojek, A., & Tyski, S. (2022). How to Improve Health with Biological Agents-Narrative Review. Nutrients. Vol. 14(9). https://doi.org/10.3390/nu14091700

85. Zhilan, S., Wang, X., Zhang, X., & Wu, H. (2018). Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. Journal of Industrial Microbiology and Biotechnology. Vol. 45(3). P. 213–227. https://doi.org/10.1007/s10295-018-2008-6

86. Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P. & et al. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International journal of systematic and evolutionary microbiology. Vol. 70(4). P. 2782–2858. https://doi.org/10.1099/ijsem.0.004107

87. Zimina, M., Babich, O., Prosekov, A., & Sukhikh, S. (2020). Overview of Global Trends in Classification, Methods of Preparation and Application of Bacteriocins. Antibiotics). Vol. 9(9). https://doi.org/10.3390/antibiotics9090553

88. Zhang, J., Bu, Y., Zhang, C., Yi, H., Liu, D., & Jiao, J. (2020). Development of a Low-Cost and High-Efficiency Culture Medium for Bacteriocin Lac-B23 Production by Lactobacillus plantarum J23. Biology. Vol. 9(7). https://doi.org/10.3390/biology9070171

89. Zhou, B., & Zhang, D. (2018). Antibacterial effects of bacteriocins isolated from Lactobacillus rhamnosus (ATCC 53103) in a rabbit model of knee implant infection. Experimental and Therapeutic Medicine. Vol. 15(3). https://doi.org/10.3892/etm.2018.5790


Review

For citations:


Kanochkina M.S., Ivanova L.A., Sokolov I.R., Konovalova A.D., Levin O.N. Potential for the use of Lactobacilli bacteriocins in clinical practice (a systematic review of the subject field). Health, Food & Biotechnology. 2025;7(3).

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)