Preview

Health, Food & Biotechnology

Расширенный поиск

Возможности использования бактериоцинов лактобактерий в клинической практике (систематический обзор предметного поля)

Аннотация

Введение. В пищевой и фармацевтической промышленности активно применяют молочнокислые бактерии в связи с их способностью к продуцированию технологически ценных веществ, имеющих важное значение для производства продуктов питания. Также некоторые молочнокислые бактерии используют для профилактики и лечения различных заболеваний за счет наличия у них пробиотических свойств. Интерес к родам Lactiplantibacillus и Lactobacillus обуславливается их способностью к синтезу бактериоцинов, которые обладают антимикробной активностью, что приводит к подавлению роста посторонней микрофлоры. Обсуждается возможность применения бактериоцинов в качестве альтернативы антибиотикам в борьбе с патогенной микрофлорой, в том числе в составе пищевых продуктов. Однако лабильность бактериоцинов ограничивает их широкомасштабное использование.

Цель исследования проведение критического анализа актуальных литературных данных для      выявления основных механизмов действия бактериоцинов, определения направлений их использования в клинической практике и в лечебном питании (с учетом конкретных примеров), а также оценки возможных источников выделения новых высокоактивных штаммов-продуцентов бактериоцинов.

Методы. В рамках исследования был проведен систематический анализ научной литературы за период с 2014 по 2024 г. в соответствии с руководством PRISMA. Первоначальный поиск по заданным ключевым словам выявил 127 научных публикаций. В результате двухэтапного скрининга, включавшего применение критериев включения и исключения, а также удаление дубликатов, для углубленного критического анализа было отобрано 89 статей, которые составили основу данного систематического обзора. Поиск релевантных материалов осуществлялся в базах данных PubMed, Российский индекс научного цитирования (РИНЦ) и других.

Результаты и обсуждение. Проведен критический анализ 89 научных статей. Определены потенциальные направления применения бактериоцинов лактобактерий в клинической практике и лечебном питании: борьба с инфекциями желудочно-кишечного тракта; использование бактериоцинов в качестве замены антибиотикам, а также как антибиопленочное средство. Наиболее известным бактериоцином является низин, который синтезируется Lactococcus lactis и широко применяется в качестве консерванта в пищевой промышленности. Однако такие бактерии, как Lactiplantibacillus plantarum, Lactobacillus gasseri, Lactobacillus crispatus, Latilactobacillus sakei являются бактериоциногенными и могут также успешно применяться. Систематизированы актуальные данные по характеристике и механизму действия бактериоцинов. Показана корреляция между течением соответствующих воспалительных заболеваний желудочно-кишечного тракта, дозой применяемых антибиотиков и приемом очищенных бактериоцинов или пробиотических микроорганизмов, продуцирующих бактериоцины in situ. Рассмотрены существующие препятствия для быстрого внедрения бактериоцинов в клиническую практику, что является актуальным вопросом в связи с нарастающим количеством антибиотикорезистентных штаммов условно-патогенных и патогенных инфекционных агентов. Доказана возможность использования бактериоцинов в качестве альтернатив антибиотикам и/или средств, уменьшающих дозу применяемых антибиотиков, и/или средств лечения и профилактики заболеваний желудочно-кишечного тракта. Определены основные перспективные источники выделения высокоактивных штаммов-продуцентов бактериоцинов. Дальнейшие направления исследований включают целенаправленный скрининг высокоактивных бактериоцин-продуцирующих штаммов лактобактерий с пробиотическими свойствами, разработку схемы снижения дозы антибиотиков за счет использования полученных бактериоцинов.

Об авторах

Мария Сергеевна Каночкина
ООО "Микробные нутриенты иммунокорректоры"
Россия

Кандидат технических наук, направления деятельности: биотехнология, технология получения БАВ, микробиота, пре-, про- и аутопробиотики для человека и животных. SPIN-код: 2584-6474, AuthorID: 1087397



Людмила Афанасьевна Иванова
ФГБОУ ВО «Российский биотехнологический университет (РОСБИОТЕХ)», д.т.н., профессор, профессор кафедры «Биотехнология и биоорганический синтез».
Россия

ФГБОУ ВО «Российский биотехнологический университет (РОСБИОТЕХ)», д.т.н., профессор, профессор кафедры «Биотехнология и биоорганический синтез».



Илья Романович Соколов
ФГБОУ ВО «Российский биотехнологический университет (РОСБИОТЕХ)», аспирант кафедры «Биотехнология и биоорганический синтез».
Россия

ФГБОУ ВО «Российский биотехнологический университет (РОСБИОТЕХ)», аспирант кафедры «Биотехнология и биоорганический синтез».



Анастасия Дмитриевна Коновалова
ФГБОУ ВО «Российский биотехнологический университет (РОСБИОТЕХ)», магистр кафедры «Биотехнология и биоорганический синтез».
Россия

ФГБОУ ВО «Российский биотехнологический университет (РОСБИОТЕХ)», магистр кафедры «Биотехнология и биоорганический синтез».



Олег Николаевич Левин
ФГАОУ ВО «Тюменский государственный университет», магистр кафедры «Школа естественных наук».
Россия

ФГАОУ ВО «Тюменский государственный университет», магистр кафедры «Школа естественных наук».



Список литературы

1. Andriukov, B. G., & Nedashkovskaya, E. P. (2018). Entering the post-antibiotic era: promising strategies for finding new alternative strategies to combat infectious diseases. Health. Medical ecology. Nauka, 75 (3), 36-50. https://doi.org/10.5281/zenodo.1488026 (In Russ.)

2. Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O.P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology and Biotechnology, 100 (7), 2939-2951. https://doi.org/10.1007/s00253-016-7343-9

3. Amer, S. A., Abushady, H. M., Refay, R. M., & Mailam, M. A. (2021). Enhancement of the antibacterial potential of plantaricin by incorporation into silver nanoparticles. Journal, genetic engineering and biotechnology, 19 (1), 13. https://doi.org/10.1186/s43141-020-00093-z

4. Avaiyarasi, N. D, Ravindran, A. D, Venkatesh, P., & Arul, V. (2016). In vitro selection, characterization and cytotoxic effect of bacteriocin of Lactobacillus sakei GM3 isolated from goat milk. Food Control, (69), 124‐133. https://doi.org/10.1016/J.FOODCONT.2016.04.036

5. Babatunde, D. A., & Oladejo, P. O. (2014). Identification of lactic acid bacteria isolated from Nigerian foods. Medical importance and comparison of their bacteriocins activities. Journal of Natural Sciences Research, (4), 76–87.

6. Baindara, P., Korpole, S., & Grover, V. (2018). Bacteriocins: perspective for the development of novel anticancer drugs. Applied Microbiology and Biotechnology, 102 (24), 10393–10408. https://doi.org/10.1007/s00253-018-9420-8

7. Bamgbose, T., Habiba, I. A., & Anvikar, A. R. (2021). Bacteriocins of Lactic Acid Bacteria and Their Industrial Application. Current Topic in Lactic Acid Bacteria and Probiotics, (7), 1–13. https://doi.org/10.35732/ctlabp.2021.7.1.1

8. Bastos, Mdo. C., Coelho, M. L., & Santos, O. C. (2015). Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology (Reading), 161 (4), 683–700. https://doi.org/ 10.1099/mic.0.082289-0.

9. Belguesmia, Y., Naghmouchi, K., Chihib, N.E., & Drider, D. (2011). Class IIa Bacteriocins: Current Knowledge and Perspectives. Prokaryotic Antimicrobial Peptides, 171–195. https://doi.org/10.1007/978-1-4419-7692-5_10

10. Bengtsson, T., Selegård, R., Musa, A., Hultenby, K., Utterström, J., Sivlér, P., Skog, M., Nayeri, F., Hellmark, B., Söderquist, B., Aili, D., & Khalaf, H. (2020). Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiotics. Scientific Reports, 10 (1), 3580. https://doi.org/10.1038/s41598-020-60570-w

11. Boyanova, L., Gergova, G., Markovska, R., & Yordanov, D. (2017). Bacteriocin-like inhibitory activities of seven Lactobacillus delbrueckii subsp. bulgaricus strains against antibiotic susceptible and resistant Helicobacter pylori strains. Letters in Applied Microbiology, 65 (6), 469–474. https://doi.org/10.1111/lam.12807

12. Cesa-Luna, C., Alatorre-Cruz, J. M., Carreño-López, R., Quintero-Hernández, V., & Baez, A. (2021). Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Polish Journal of Microbiology, 70 (2), 143–159. https://doi.org/10.33073/pjm-2021-020

13. Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A., & Dicks, L. M. (2018). Functions and emerging applications of bacteriocins. Current Opinion in Biotechnology, (49), 23–28. https://doi.org/10.1016/j.copbio.2017.07.011

14. Cintas, L. M., Casaus, M. P, Herranz, C., Nes, I. F., & Hernández, P. E. (2001). Review: Bacteriocins of Lactic Acid Bacteria. Food Science and Technology International, (7), 281-305.

15. Cotter, P. D., Ross, R. P, & Hill, C. (2013). Bacteriocins - a viable alternative to antibiotics? Nature reviews. Microbiology, 11 (2), 95-105. https://doi.org/10.1038/nrmicro2937

16. De Giani, A., Bovio, F., Forcella, M., Fusi, P., Sello, G, & Di Gennaro, P. (2019). Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cells. AMB Express, 9 (1), 88. https://doi.org/10.1186/s13568-019-0813-6

17. De Vuyst, L., & Leroy, F. (2007). Bacteriocins from lactic acid bacteria: production, purification, and food applications. Journal of Molecular Microbiology and Biotechnology, 13 (4), 194–199. https://doi.org/10.1159/000104752

18. Di Cagno, R., De Angelis, M., Calasso, M., & Vincentini O. (2010). Quorum sensing in sourdough Lactobacillus plantarum DC400: Induction of plantaricin A (PlnA) under co-cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco-2 cells. PROTEOMICS, 10 (11), 2175–2190. https://doi.org/10.1002/pmic.200900565

19. Dicks, L. M. T., Dreyer, L., Smith, C., & van Staden, A. D. (2018). A Review: The Fate of Bacteriocins in the Human Gastro-Intestinal Tract: Do They Cross the Gut-Blood Barrier? Frontiers in Microbiology, (9), 2297. https://doi.org/10.3389/fmicb.2018.02297

20. Duraisamy, S., Balakrishnan, S., Ranjith, S., Husain, F., Sathyan, A., Peter, A. S., Prahalathan, C., & Kumarasamy, A. (2020). Bacteriocin-a potential antimicrobial peptide towards disrupting and preventing biofilm formation in the clinical and environmental locales. Environmental Science and Pollution Research International, 27 (36), 44922–44936. https://doi.org/10.1007/s11356-020-10989-5

21. Eyler, R. F., & Shvets, K. (2019). Clinical Pharmacology of Antibiotics. Clinical journal of the American Society of Nephrology: CJASN, 14 (7), 1080–1090. https://doi.org/10.2215/CJN.08140718

22. Favaro, L., Barretto Penna, A. L., & Todorov, S. D. (2014). Bacteriocinogenic LAB from cheeses – Application in biopreservation. Trends in Food Science & Technology, 41 (1), 37–48. https://doi.org/10.1016/j.tifs.2014.09.001

23. Field, D., Fernandez de Ullivarri, M., Ross, R. P., & Hill, C. (2023). After a century of nisin research - where are we now? FEMS Microbiology Reviews, 47 (3), fuad023. https://doi.org/10.1093/femsre/fuad023.

24. Flynn, J., Ryan, A., & Hudson, S. P. (2021). Pre-formulation and delivery strategies for the development of bacteriocins as next generation antibiotics. European Journal of Pharmaceutics and Biopharmaceutics, (165), 149–163. https://doi.org/10.1016/j.ejpb.2021.05.015

25. Fu, T., Yu, M., Yan, Q., & Liu, Y. M. (2018). Bacteriocin Isolated from Lactobacillus rhamnosus L34 has antibacterial effects in a rabbit model of infection after mandible fracture fixation. Medical Science Monitor, (24), 8009–8014. https://doi.org/10.12659/MSM.909630

26. Garcia-Gutierrez, E., O'Connor, P. M, Colquhoun, I. J, Vior, N. M. Rodríguez, J. M., Mayer, M. J., Cotter, P. D., & Narbad, A. (2020). Production of multiple bacteriocins, including the novel bacteriocin gassericin M, by Lactobacillus gasseri LM19, a strain isolated from human milk. Applied Microbiology and Biotechnology, 104 (9), 3869–3884. https://doi.org/10.1007/s00253-020-10493-3

27. Guseva, T. B., Soldatova, S. Yu., & Karanian O. M. (2021). Organoleptic evaluation of canned milk products: features of conducting and interpreting the results. Commodity specialist of Food Products, (10), 726-729. https://doi.org/10.33920/igt-01-2110-01 (In Russ.)

28. Han X, Zhang, M., Peng, J., Wu, J., & Zhong, Q. (2023). Purification and characterization of a novel bacteriocin from Lactiplantibacillus plantarum Z057, and its antibacterial and antibiofilm activities against Vibrio parahaemolyticus. LWT, (173). https://doi.org/10.1016/j.lwt.2022.114358

29. Han, L., & Madduri, K. (2013). Exploring antibiotic biosynthesis: Leo Vining's insights lead to new strategies in the quest for 'The 10 × '20 Initiative. The Journal of Antibiotics, 66 (7), 365–369. https://doi.org/10.1038/ja.2013.46

30. Hassan, M. U., Nayab, H., Rehman, T. U., Williamson, M. P., Haq, K. U., Shafi, N., & Shafique, F. (2020). Characterisation of bacteriocins produced by Lactobacillus spp. isolated from the traditional Pakistani yoghurt and their antimicrobial activity against common foodborne pathogens. BioMed Research International, (2020), 54-60. https://doi.org/10.1155/2020/8281623

31. Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E., & Castrejon-Jimenez, N. S. (2021). Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals, 11(4), 979. https://doi.org/10.3390/ani11040979

32. Huang, F., Teng, K., Liu, Y., Cao, Y., Wang, T., Ma, C., Zhang, J., & Zhong, J. (2021). Bacteriocins: Potential for Human Health. Oxidative Medicine and Cellular Longevity, (2021), 5518825. https://doi.org/10.1155/2021/5518825

33. Huemer, M., Mairpady Shambat, S., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Reports, 21 (12). https://doi.org/10.15252/embr.202051034

34. Iqbal, Z., Ahmed, S., Tabassum, N., Bhattacharya, R., & Bose, D. (2021). Role of probiotics in prevention and treatment of enteric infections: a comprehensive review. Biotechnology, 11 (5), 242. https://doi.org/10.1007/s13205-021-02796-7

35. Jacquier, H., Vironneau, P., Dang, H., Verillaud, B., Lamers, G., Herman, P., Vicaut, E., Tessier, N., Bidet, P., Varon, E., Van Den Abbeele, T., Cambau, E., Bercot, B., & Kania, R. (2020). Bacterial biofilm in adenoids of children with chronic otitis media. Part II: a case-control study of nasopharyngeal microbiota, virulence, and resistance of biofilms in adenoids. Acta Oto-laryngologica, 140 (3), 220–224. https://doi.org/10.1080/00016489.2020.1718749

36. Jiang, H., Tang, X., Zhou, Q., Zou, J., Li, P., Breukink, E., & Gu, Q. (2018). Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Applied Microbiology and Biotechnology, 102 (17), 7465–7473. https://doi.org/10.1007/s00253-018-9182-3.

37. Jiang, Y., Xin, W., Yang, L., Ying, J. P., Zhao, Z. S., Lin, L. B., Li, X. Z., & Zhang, Q. L. (2022). A novel bacteriocin against Staphylococcus aureus from Lactobacillus paracasei isolated from Yunnan traditional fermented yogurt: Purification, antibacterial characterization, and antibiofilm activity. Journal of Dairy Science, 105 (3), 2094–2107. https://doi.org/10.3168/jds.2021-21126

38. Johnson, E. M., Jung, D. Y., Jin, D. Y., Jayabalan, D. R., Yang, D. S. H., & Suh, J. W. (2018). Bacteriocins as food preservatives: Challenges and emerging horizons. Critical Reviews in Food Science and Nutrition, 58 (16), 2743–2767. https://doi.org/10.1080/10408398.2017.1340870.

39. Keikha, M. (2020). Is there a relationship between Helicobacter pylori vacA i1 or i2 alleles and development into peptic ulcer and gastric cancer? A meta-analysis study on an Iranian population. New Microbes New Infect, (36), 100726. https://doi.org/10.1016/j.nmni.2020.100726

40. Kumariya, R., Garsa, A. K., Rajput, Y. S., & Sood, S. K. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis, (128), 171–177. https://doi.org/10.1016/j.micpath.2019.01.002

41. Lakshminarayanan, B., Guinane, C. M., O'Connor, P. M., Coakley, M., Hill, C., Stanton, C., O'Toole, P. W., & Ross, R. P. (2013). Isolation and characterization of bacteriocin-producing bacteria from the intestinal microbiota of elderly Irish subjects. Journal of Applied Microbiology, 114 (3), 886–898. https://doi.org/10.1111/jam.12085

42. Lee, D. H., Kim, B. S., & Kang, S. S. (2020). Bacteriocin of Pediococcus acidilactici HW01 Inhibits Biofilm Formation and Virulence Factor Production by Pseudomonas aeruginosa. Probiotics and Antimicrobial Proteins, 12 (1), 73–81. https://doi.org/10.1007/s12602-019-09623-9

43. Lelis, C. A, de Carvalho, A. P. A, & Conte Junior, C. A. A. (2021). Systematic Review on Nanoencapsulation Natural Antimicrobials in Foods: In Vitro versus In Situ Evaluation, Mechanisms of Action and Implications on Physical-Chemical Quality. International Journal of Molecular Sciences, 22 (21), 12055. https://doi.org/10.3390/ijms222112055

44. Lima, L. M., Silva, B. N. M. D., Barbosa, G., & Barreiro, E. J. (2020). β-lactam antibiotics: An overview from a medicinal chemistry perspective. European Journal of Medicinal Chemistry, (208), 112829. https://doi.org/10.1016/j.ejmech.2020.112829

45. Lindgren, S. E., & Dobrogosz, W. J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Reviews, 7 (1-2), 149–163. https://doi.org/10.1111/j.1574-6968.1990.tb04885.x

46. Lonnie, O. (1989). Ingram. Ethanol Tolerance in Bacteria. Critical Reviews in Biotechnology, 305-319. https://doi.org/10.3109/07388558909036741

47. Mahdi, L. H., Jabbar, H. S., & Auda, I. G. (2019). Antibacterial immunomodulatory and antibiofilm triple effect of Salivaricin LHM against Pseudomonas aeruginosa urinary tract infection model. International Journal of Biological Macromolecules, (134), 1132–1144. https://doi.org/10.1016/j.ijbiomac.2019.05.181

48. Markowiak, P., & Śliżewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9 (9), 1021. https://doi.org/10.3390/nu9091021

49. Meade, E., Slattery, M. A., & Garvey, M. (2020). Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics, 9 (1), 32. https://doi.org/10.3390/antibiotics9010032

50. Meng, F., Liu, Y., Nie, T., Tang, C., Lyu, F., Bie, X., Lu, Y., Zhao, M., & Lu, Z. (2022). Plantaricin A, Derived from Lactiplantibacillus plantarum, Reduces the Intrinsic Resistance of Gram-Negative Bacteria to Hydrophobic Antibiotics. Applied and Environmental Microbiology, 88 (10), e0037122. https://doi.org/10.1128/aem.00371-22

51. Michael, C. A., Dominey-Howes, D., & Labbate, M. (2014). The antimicrobial resistance crisis: causes, consequences, and management. Frontiers in Public Health, (2), 145. https://doi.org/10.3389/fpubh.2014.00145

52. Miralimova, Sh. M., Ogai, D. K., Kutlieva, G. D., Ibragimova, A.D. & Sohibnazarova, H. (2016). Synthesis of a bacteriocin-like substance by Lactobacillus plantarum 42 strain isolated from sauerkraut. Scientific Results of Biomedical Research, (3), 56-63. https://doi.org/10.18413/2313-8955-2016-2-3-56-63 (In Russ.)

53. Mokoena, M. P. (2017). Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Molecules, 22 (8), 1255. https://doi.org/10.3390/molecules22081255

54. Mørtvedt, C. I., Nissen-Meyer, J., Sletten, K., & Nes, I. F. (1991). Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Applied and Environmental Microbiology, 57 (6), 1829–1834. https://doi.org/ 10.1128/AEM.57.6.1829-1834.1991

55. Noroozi, E., Mojgani, N., Motevaseli, E., Modarressi, M. H., & Tebianian, M. (2019). Physico-chemical and cytotoxic analysis of a novel large molecular weight bacteriocin produced by Lactobacillus casei TA0021. Iranian Journal of Microbiology, 11 (5), 397–405.

56. Parada, J. L., Caron, C. R., Medeiros, A. B. P., & Soccol, C. R. (2007). Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Brazilian Archives of Biology and Technology, 50 (3), 512-542. https://doi.org/10.1590/S1516-89132007000300018

57. Peng, S., Song, J., Zeng, W., Wang, H., Zhang, Y., Xin, J., & Suo, H. (2021). A broad-spectrum novel bacteriocin produced by Lactobacillus plantarum SHY 21–2 from yak yogurt: Purification, antimicrobial characteristics and antibacterial mechanism. LWT, (142), 110955. https://doi.org/10.1016/j.lwt.2021.110955

58. Pu, J., Hang, S., Liu, M., & Chen, Z. A. (2022). Class IIb Bacteriocin Plantaricin NC8 Modulates Gut Microbiota of Different Enterotypes in vitro. Frontiers in Nutrition, (9), 877948. https://doi.org/10.3389/fnut.2022.877948

59. Ratsep, M., Naaber, P., Koljalg, S., Smidt, I., Shkut, E., & Sepp, E. (2014). Effect of Lactobacillus plantarum strains on clinical isolates of Clostridium difficile in vitro. Journal of Probiotics Health, (2), 119.

60. Ren, Z. H., Hu, C. Y., He, H. R., Li, Y. J., & Lyu, J. (2020). Global and regional burdens of oral cancer from 1990 to 2017: Results from the global burden of disease study. Cancer Communications, 40 (2-3), 81–92. https://doi.org/10.1002/cac2.12009

61. Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 82 (4), 632–639. https://doi.org/10.1093/ps/82.4.632

62. Schwartz, D. J., Langdon, A. E., & Dantas, G. (2020). Understanding the impact of antibiotic perturbation on the human microbiome. Genome Medicine, 13 (1), 26. https://doi.org/10.1186/s13073-020-00782-x

63. Sharma, B. R., Halami, P. M., & Tamang, J. P. (2021). Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods. Food Science and Biotechnology, 31 (1), 1–16. https://doi.org/10.1007/s10068-021-00986-w

64. Singh, V. P. (2018). Recent approaches in food bio-preservation - a review. Open Veterinary Journal, 8 (1), 104–111. https://doi.org/10.4314/ovj.v8i1.16

65. Soldatova, S.Y., Butova, S.N., & Golovanova, K.Y. (2016). Development of a formulation of a biologically active additive for normalization of the gastrointestinal tract. Bulletin of Science and Practice, 5 (6), 27-33. https://doi.org/10.5281/zenodo.54823 (In Russ.)

66. Soltani, S, Hammami, R, Cotter, P. D., Rebuffat, S., Said, L. B., Gaudreau, H., Bédard, F., Biron, E., Drider, D., & Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Review, 45 (1), fuaa039. doi: https://doi.org/10.1093/femsre/fuaa039

67. Soomro, A.H, Musad, T., Sammiand, S., & Rathore, H.A. (2007). Comparison of different methods for detection of antimicrobial activity of Lactobacillus spp. Pakistan Journal of Zoology, 39 (4), 265–268.

68. Surendran, Nair M., Amalaradjou, M. A., & Venkitanarayanan, K. (2017). Antivirulence Properties of Probiotics in Combating Microbial Pathogenesis. Advances in Applied Microbiology, (98), 1–29. https://doi.org/10.1016/bs.aambs.2016.12.001

69. Swe, P. M., Cook, G. M., Tagg, J. R., & Jack, R. W. (2009). Mode of action of dysgalacticin: a large heat-labile bacteriocin. The Journal of Antimicrobial Chemotherapy, 63(4), 679–686. https://doi.org/10.1093/jac/dkn552

70. Therdtatha, P., Tandumrongpong, C., Pilasombut, K., Matsusaki, H. Keawsompong, S., & Nitisinprasert, N. (2016). Characterization of antimicrobial substance from Lactobacillus salivarius KL-D4 and its application as biopreservative for creamy filling. SpringerPlus, 5 (1), 1060. https://doi.org/10.1186/s40064-016-2693-4

71. Tikhonova, E. V., & Shlenskaya, N.M. (2021). A review of the subject field as a method for synthesizing scientific data. Storage and Processing of Agricultural Raw Materials, (3), 11-25. https://doi.org/10.36107/spfp.2021.257 (In Russ.)

72. Todorov, S. D. (2009). Bacteriocins from Lactobacillus plantarum – Production genetic organization. Brazilian Journal of Microbiology, (40), 209–221.

73. Todorov, S. D., de Paula, O. A. L., Camargo, A. C., Lopes, D. A., & Nero, L. A. (2018). Combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis or EDTA for controlling biofilm development by Listeria monocytogenes. Revista Argentina de Microbiologia, 50 (1), 48–55. https://doi.org/10.1016/j.ram.2017.04.011

74. Todorov, S. D., Wachsman, M., Tomé, E., Vaz-Velho, M., & Ivanova, I. V. (2023). Plasmid-Associated Bacteriocin Produced by Pediococcus pentosaceus Isolated from Smoked Salmon: Partial Characterization and Some Aspects of his Mode of Action. Probiotics and Antimicrobial Proteins, (16), 394-412. https://doi.org/10.1007/s12602-023-10059-5

75. Tsai, T. L., Li, A. C., Chen, Y. C., Liao, Y. S., & Lin, T. H. (2015). Antimicrobial peptide m2163 or m2386 identified from Lactobacillus casei ATCC 334 can trigger apoptosis in the human colorectal cancer cell line SW480. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 36 (5), 3775–3789. https://doi.org/10.1007/s13277-014-3018-2

76. Umu, Ö. C., Bäuerl, C., Oostindjer, M., Pope, P. B., Hernández, P. E., Pérez-Martínez, G., & Diep, D. B. (2016). The Potential of Class II Bacteriocins to Modify Gut Microbiota to Improve Host Health. PLoS One, 11 (10), е0164036. https://doi.org/10.1371/journal.pone.0164036

77. Wang, H., Xie, Y., Zhang, H., & Jin, J. (2020). Quantitative proteomic analysis reveals the influence of plantaricin BM-1 on metabolic pathways and peptidoglycan synthesis in Escherichia coli K12. PLoS One, 15 (4), e0231975. https://doi.org/10.1371/journal.pone.0231975

78. Wang, Z., Zhang, Y., Chen, C., Fan, S., Deng, F., & Zhao, L. A. (2023). A novel bacteriocin isolated from Lactobacillus plantarum W3-2 and its biological characteristics. Frontiers in Nutrition, (9), 1111880. https://doi.org/10.3389/fnut.2022.1111880

79. Wayah, S. B., & Philip, K. (2018). Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microbial cell Factories, 17 (1), 125. https://doi.org/10.1186/s12934-018-0972-1

80. Wayah, S. B., & Philip, K. (2018). Purification, characterization, mode of action, and enhanced production of Salivaricin mmaye1, a novel bacteriocin from Lactobacillus salivarius SPW1 of human gut origin. Electronic Journal of Biotechnology, (35), 39–47. https://doi.org/10.1016/j.ejbt.2018.08.003

81. Youssefi, M., Tafaghodi, M., Farsiani, H., Ghazvini, K., & Masoud, К. (2021). Helicobacter pylori infection and autoimmune diseases; Is there an association with systemic lupus erythematosus, rheumatoid arthritis, autoimmune atrophy gastritis and autoimmune pancreatitis? Journal of Microbiology, Immunology, and Infection, 54 (3), 359–369. https://doi.org/10.1016/j.jmii.2020.08.011

82. Zaslavskaya, M. I., Makhrova, T. V., Alexandrova, N. A., Ignatova, N. I., Belova, I. V., Tochilina, A. G., & Solovyova, I. V. (2019). Prospects of using normal microbiota bacteriocins in antibacterial therapy (review). Modern Technologies of Medicine, (3), 136-145. https://doi.org/10.17691/stm2019.11.3.17

83. Zawistowska-Rojek, A., & Tyski, S. (2022). How to Improve Health with Biological Agents-Narrative Review. Nutrients, 14 (9), 1700. https://doi.org/10.3390/nu14091700

84. Zawistowska-Rojek, A., Kociszewska, A., Zaręba, T., & Tyski, S. (2022). New Potentially Probiotic Strains Isolated from Humans - Comparison of Properties with Strains from Probiotic Products and ATCC Collection. Polish Journal of Microbiology, 71 (3), 395–409. https://doi.org/10.33073/pjm-2022-035

85. Zhang, J., Bu, Y., Zhang, C., Yi, H., Liu, D., & Jiao, J. (2020). Development of a Low-Cost and High-Efficiency Culture Medium for Bacteriocin Lac-B23 Production by Lactobacillus plantarum J23. Biology, 9(7), 171. https://doi.org/10.3390/biology9070171

86. Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O'Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70 (4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107

87. Zhilan, S., Wang, X., Zhang, X., & Wu, H. (2018). Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. Journal of Industrial Microbiology and Biotechnology, 45 (3), 213–227. https://doi.org/10.1007/s10295-018-2008-6

88. Zhou, B., & Zhang, D. (2018). Antibacterial effects of bacteriocins isolated from Lactobacillus rhamnosus (ATCC 53103) in a rabbit model of knee implant infection. Experimental and Therapeutic Medicine, 15 (3), 2985-2989. https://doi.org/10.3892/etm.2018.5790

89. Zimina, M., Babich, O., Prosekov, A., & Sukhikh, S. (2020). Overview of Global Trends in Classification, Methods of Preparation and Application of Bacteriocins. Antibiotics, 9 (9), 553. https://doi.org/10.3390/antibiotics9090553


Рецензия

Для цитирования:


Каночкина М.С., Иванова Л.А., Соколов И.Р., Коновалова А.Д., Левин О.Н. Возможности использования бактериоцинов лактобактерий в клинической практике (систематический обзор предметного поля). Health, Food & Biotechnology. 2025;7(3).

For citation:


Kanochkina M.S., Ivanova L.A., Sokolov I.R., Konovalova A.D., Levin O.N. Potential for the use of Lactobacilli bacteriocins in clinical practice (a systematic review of the subject field). Health, Food & Biotechnology. 2025;7(3).

Просмотров: 11


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)