Health, Food & Biotechnology

Расширенный поиск

Effects of microwave radiation on living microorganisms: effects and mechanisms

Полный текст:


The article analyzes the scientific literature on the effect of microwave exposure on the vital activity of microorganisms. The influence of the frequency of microwaves, the power of the applied impact and the total amount of absorbed energy on the viability of microorganisms and the features of their growth is considered. Possible mechanisms of interaction of microbial cells with the electromagnetic field in the ultrahigh frequency range are considered. It is noted that microorganisms die when exposed to high-energy and high-frequency microwaves, while low-energy and high-frequency microwaves contribute to the intensification of their growth. It is concluded that although many authors observe significant biological effects when exposed to microwaves on living systems, this issue has not been sufficiently studied in the scientific literature. It is of interest to conduct a systematic study of the effect of microwaves of a certain frequency on the biological, biochemical and growth parameters of the cells of microorganisms, in particular lactic acid organisms, in order to use the results of these studies in the food industry in the production of new food products.

Об авторах

Tatyana N. Danilchuk
Moscow State University of Food Production

M-Kamal Alkhateeb
Moscow State University of Food Production

Список литературы

1. Asadi, A., Khavari-Nejad, R. A., Soltani, N., Najafi, F., & Molaie-Rad, A. (2011). Physiological variability in cyanobacterium Phormidium sp. Ktzing ISC31 (Oscillatoriales) as response to varied microwave intensities. African Journal of Agricultural Research, 6(7), 1673-1681.

2. Banik, S. B. A. S. G. S., Bandyopadhyay, S., & Ganguly, S. (2003). Bioeffects of microwave––a brief review. Bioresource technology, 87(2), 155-159.

3. Belyaev, I. Y., Shcheglov, V. S., & Alipov, Y. D. (1992). Selection rules on helicity during discrete transitions of the genome conformational state in intact and X-rayed cells of E. coli in millimeter range of electromagnetic field. In Charge and Field Effects in Biosystems—3 (pp. 115-126). Birkhäuser Boston.

4. Carta, R., & Desogus, F. (2010). The effect of low‐power microwaves on the growth of bacterial populations in a plug flow reactor. AIChE Journal, 56(5), 1270-1278.

5. Chen, W., Hang, F., Zhao, J. X., Tian, F. W., & Zhang, H. (2007). Alterations of membrane permeability in Escherichia coli and Staphylococcus aureus under microwave. Wei sheng wu xue bao= Acta Microbiologica Sinica, 47(4), 697-701.

6. Cleary, S. F. (1970, June). Biological effects and health implications of microwave radiation. In Symposium proceedings (Richmond, V., Sept. 17, 1969). US Deparment of Health, Education, and Welfare. Report BRH/DBE (pp. 70-2).

7. Copty, A. B., Neve-Oz, Y., Barak, I., Golosovsky, M., & Davidov, D. (2006). Evidence for a specific microwave radiation effect on the green fluorescent protein. Biophysical Journal, 91(4), 1413-1423.

8. Culkin, K. A., & FUNG, D. Y. (1975). Destruction of Escherichia coli and Salmonella typhimurium in microwave-cooked soups. Journal of Milk and Food Technology, 38(1), 8-15.

9. Cunningham, F. E. (1978). The effect of brief microwave treatment on numbers of bacteria in fresh chicken patties. Poultry Science, 57(1), 296-297.

10. Czerska, E. M., Elson, E. C., Davis, C. C., Swicord, M. L., & Czerski, P. (1992). Effects of continuous and pulsed 2450‐MHz radiation on spontaneous lymphoblastoid transformation of human lymphocytes in vitro. Bioelectromagnetics, 13(4), 247-259.

11. Dholiya, K., Patel, D., & Kothari, V. (2012). Effect of low power microwave on microbial growth, enzyme activity, and aflatoxin production. Research in Biotechnology, 3(4).

12. Diem, E., Schwarz, C., Adlkofer, F., Jahn, O., & Rüdiger, H. (2005). Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 583(2), 178-183.

13. Dreyfuss, M. S., & Chipley, J. R. (1980). Comparison of effects of sublethal microwave radiation and conventional heating on the metabolic activity of Staphylococcus aureus. Applied and environmental microbiology, 39(1), 13-16.

14. Dreyfuss, M. S. (1978). The Effects of Microwave Radiation Upon Escherichia Coli, Staphylococcus Aureus, Salmonella Enteritidis, and Bacillus Cereus (Doctoral dissertation, Ohio State University).

15. Duhain, G. L. M. C., Minnaar, A., & Buys, E. M. (2012). Effect of chlorine, blanching, freezing, and microwave heating on Cryptosporidium parvum viability inoculated on green peppers. Journal of food protection, 75(5), 936-941.

16. Fregel, R., Rodriguez, V., & Cabrera, V. M. (2008). Microwave improved Escherichia coli transformation. Letters in applied microbiology, 46(4), 498-499.

17. Garcia-Martin, F., Hinou, H., Matsushita, T., Hayakawa, S., & Nishimura, S. I. (2012). An efficient protocol for the solid-phase synthesis of glycopeptides under microwave irradiation. Organic & biomolecular chemistry, 10(8), 1612-1617.

18. Gorny, R. L., Mainelis, G., Wlazlo, A., Niesler, A., Lis, D. O., Marzec, S., ... & Kasznia-Kocot, J. (2007). Viability of fungal and actinomycetal spores after microwave radiation of building materials. Annals of Agricultural and Environmental Medicine, 14(2).

19. Grundler, W., Keilmann, F., & Fröhlich, H. (1977). Resonant growth rate response of yeast cells irradiated by weak microwaves. Physics letters A, 62(6), 463-466.

20. Heddleson, R. A., & Doores, S. (1994). Factors affecting microwave heating of foods and microwave induced destruction of foodborne pathogens–a review. Journal of Food Protection, 57(11), 1025-1037.

21. Herrero, M. A., Kremsner, J. M., & Kappe, C. O. (2008). Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. The Journal of organic chemistry, 73(1), 36-47.

22. Iuliana, C., Rodica, C., Sorina, R., & Oana, M. (2015). Impact of microwaves on the physico-chemical characteristics of cow milk. Romanian Reports in Physics, 67(2), 423-430.

23. Kalla, A. M., & Devaraju, R. (2017). Microwave energy and its application in food industry: A reveiw. Asian Journal of Dairy and Food Research, 36(1), 37-44.

24. Kim, S. Y., Jo, E. K., Kim, H. J., Bai, K., & Park, J. K. (2008). The effects of high‐power microwaves on the ultrastructure of Bacillus subtilis. Letters in applied microbiology, 47(1), 35-40.

25. Komarova, A. S., Likhacheva, A. A., & Zvyagintsev, D. G. (2008). Influence of microwave radiation on soil bacteria. Moscow University soil science bulletin, 63(4), 190-195.

26. Kozempel, M., Cook, R. D., Scullen, O. J., & Annous, B. A. (2000). Development of a process for detecting nonthermal effects of microwave energy on microorganisms at low temperature.

27. Michaelson, S. M. (1974). Effects of exposure to microwaves: problems and perspectives. Environmental health perspectives, 8, 133-155.

28. Moore, H. A., Raymond, R., Fox, M., & Galsky, A. G. (1979). Low-intensity microwave radiation and the virulence of Agrobacterium tumefaciens strain B6. Applied and environmental microbiology, 37(1), 127-130.

29. Otludil, B., Otludil, B., Tolan, V., & Akbayın, H. (2004). The effect of microwave on the cellular differentiation Bacillus subtilis YB 886 and rec derivatives YB 886 A4. Biotechnology & Biotechnological Equipment, 18(3), 107-112.

30. Ramesh, M. N., Wolf, W., Tevini, D., & Bognar, A. (2002). Microwave blanching of vegetables. Journal of food science, 67(1), 390-398.

31. Robe, K. (1966). Improve flavor of pasteurized products. Food Proc. and Marketing, 27(3), 84-86.

32. Saifuddin, N., Wong, C. W., & Yasumira, A. A. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-journal of Chemistry, 6(1), 61-70.

33. Shamis, Y., Croft, R., Taube, A., Crawford, R. J., & Ivanova, E. P. (2012). Review of the specific effects of microwave radiation on bacterial cells. Applied microbiology and biotechnology, 96(2), 319-325.

34. Shamis, Y., Taube, A., Mitik-Dineva, N., Croft, R., Crawford, R. J., & Ivanova, E. P. (2011). Specific electromagnetic effects of microwave radiation on Escherichia coli. Applied and Environmental Microbiology, 77(9), 3017-3022.

35. Shamis, Y., Taube, A., Shramkov, Y., Mitik-Dineva, N., Vu, B., & Ivanova, E. P. (2008). Development of a microwave treatment technique for bacterial decontamination of raw meat. International Journal of Food Engineering, 4(3).

36. Shazman, A., Mizrahi, S., Cogan, U., & Shimoni, E. (2007). Examining for possible non-thermal effects during heating in a microwave oven. Food Chemistry, 103(2), 444-453.

37. Spencer, R. C., Hafiz, S., & Cook, C. (1985). Effect of microwave energy on the metabolism of enterobacteriaceae. Journal of medical microbiology, 19(2), 269-272.

38. Tsuji, M., & Yokoigawa, K. (2011). Acid resistance and verocytotoxin productivity of enterohemorrhagic Escherichia coli O157: H7 exposed to microwave. Journal of food science, 76(6), M445-M449.

39. Wayland, J. R., Brannen, J. P., & Morris, M. E. (1977). On the interdependence of thermal and electromagnetic effects in the response of Bacillus subtilis spores to microwave exposure. Radiation research, 71(1), 251-258.

40. Zelentsova, N. V., Zelentsov, S. V., & Semchikov, Y. D. (2006). On the mechanism of microwave initiated reactions. ChemInform, 37(8), no-no.


Для цитирования:

Danilchuk T.N., Alkhateeb M. Effects of microwave radiation on living microorganisms: effects and mechanisms. Health, Food & Biotechnology. 2021;3(1):75-84.

For citation:

Danilchuk T.N., Alkhateeb K.М. Effects of microwave radiation on living microorganisms: effects and mechanisms. Health, Food & Biotechnology. 2021;3(1):75-84.

Просмотров: 220

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 2712-7648 (Online)