Birds of Prey as Indicators of the State of the Environment in Urban Areas
https://doi.org/10.36107/hfb.2022.i3.s152
Abstract
Introduction. The white-tailed eagle is a rare, large species of bird of prey. To restore the species, reserve populations are created in zoological institutions. Birds have a fairly high level of metabolism and are sensitive to pollutants, so it is necessary to monitor the environment and evaluate the quantitative intake of chemicals into the animal organism.
Purpose. The aim of the study was to study the effect of environmental pollution on the accumulation of heavy metals (zinc, copper, iron, lead, cadmium and arsenic) by white-tailed eagles living in zoological institutions in the cities of Moscow, Ivanovo and Yaroslavl.
Materials and Methods. The assessment of the level of metal concentration was carried out using the developed centile scales, which are planned to assess the development factors of paraneoplastic ophthalmopathies.
Results. When studying the differences in the accumulation of heavy metals in the feathers of white-tailed eagles, a significant increase in the concentration of cadmium in the rod by 3.64 times was found, which indicates its external intake. In the feathers of males, compared with females, a significant (p < 0.05) increase in the content of Cu by 13.98 times, Zn - by 8.41 times was revealed. In females, a significant increase in the concentration of Cd by 1.60 times, As - by 12.18 times was found.
Conclusions. A reliable average direct relationship between the level of Zn and Fe, Cu and Pb, Cd and As was revealed, which indicates the mutual symbation between these metals in the animal body. Between Zn and As defined antagonistic joint accumulation. The average concentrations of Zn, Cu, Pb and Cd were found in 50% of the specimens of sea eagles, Fe and As in 62.5% of the total number of birds studied. In the studied sample of animals, a tendency to an increase in the accumulation of Fe and As was revealed.
References
1. Еськов, Е. К., & Кирьякулов, В. М. (2008). Содержание тяжелых металлов в тканях уток, оседло зимующих в Московской области. Сельскохозяйственная биология, 6, 115-118.
2. Добровольская, Е. В. (2004). Тяжелые металлы в оперении птиц как природная метка. Современные проблемы природопользования, охотоведения и звероводства, 1, 122-124.
3. Лысенкова, Л. Е., & Шубина, О. С. (2004). Содержание тяжелых металлов в оперении большой синицы (Pаrus major major L.), обитающей в районе города Саранска. Успехи современного естествознания, 6, 112-113.
4. Нода, И. Б., Пономарев, В. А., Клетикова, Л. В., Пронин, В. В., Якименко, Н. Н., & Мартынов, А. Н. (2016). Содержание тяжелых металлов в органах и тканях птиц-урбофилов. Успехи современной науки и образования. Международный научно-исследовательский журнал, 3(2), 141-147.
5. Остапенко, В. А., & Некрасова, М. Н. (2017). Сохранение крупных соколов методами ex-situ в России. Ежегодник: Хищные птицы в зоопарках и питомниках, 26, 16-39.
6. Пономарев, В. А., Нода, И. Б., Клетикова, Л. В., Пронин, В. В., & Якименко, Н. Н. (2018). Содержание тяжелых металлов в перьевом покрове птиц разных экологических групп. В Актуальные исследования в области биологии и смежных наук, (с. 69-74).
7. Пономарев, В. А., Рябов, А. В., Клетикова, Л. В., Пронин, В. В., Якименко, Н. Н., Нода, И. Б., Мартынов, А. Н., Хозина, В. М., & Клетиков, С. С. (2015). Химическая экология птиц-урбофилов на примере серой вороны. Современные проблемы науки и образования, 5. http://www.science-education.ru/128-22143.
8. Степанова, М. В., & Остапенко, В. А. (2020). Содержание тяжелых металлов в снежном покрове разного функционального назначения. АгроЭкоИнфо, 3.
9. Степанова, М. В., Остапенко, В. А., & Каледин, А. П. (2020). Содержание тяжёлых металлов и мышьяка в почвах сельскохозяйственного назначения. Известия Оренбургского государственного аграрного университета, 6(86), 15-21.
10. Шашкин, М. М. (2010). Распространение, численность и экология орлана - белохвоста (Haliaeetus albicilla linnaeus, 1758) в Среднем Поволжье. Вестник ОГУ, 6(112), 99 – 102.
11. Adout, A., Hawlena, D., Maman, R., Paz-Tal, O., & Karpas. Z. (2007). Determination of trace elements in pigeon and raven feathers by ICPMS. International Journal of Mass Spectrometry, 267, 109–116.
12. Aladdin, D., Ismail, A., Taha, A., & Hussein, Z. (2022). Measurement of the trace element concentration in some livestock and poultry bone samples using X-ray fluorescence. Zanco Journal of Pure and Applied Sciences, 34, 67-73. http://dx.doi.org/10.21271/ZJPAS.34.4.7
13. Burger, J., & Gochfeld, M. (2009). Comparison of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in bald eagle (Haliaeetus leucocephalus), and comparison withcommon eider (Somateria mollissima), glaucous – winged gull (Larus glaucescens), pigeon guillemot (Cepphus Columba), and tufted puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska. Environmental Monitoring and Assessment, 152, 357 – 367. - http://dx.doi.org/10.1007/s10661-008-0321-7
14. Betleja, J., Cempulik, P. & Kwapulinski J. (1993). Ecotoxicological characteristics of the winter habitat of the moorhen (Gallinula chlorops). Pollutants in Environment, 3, 142-145.
15. Çelik, E., Durmus, A., Adizel, O., & Nergiz, H. (2021). A bibliometric analysis: what do we know about metals (loids) accumulation in wild birds? Environmental Science and Pollution Research, 28, 10302–10334http://dx.doi.org/10.1007/s11356-021-12344-8
16. Chatelain, M., Da Silva, A., Celej, M., Kurek, E., Bulska, E., Corsini, M., & Szulkin, M. (2021). Replicated, urban-driven exposure to metallic trace elements in two passerines. Scientific Reports, 11, http://dx.doi.org/10.1038/s41598-021-99329-2
17. Fernando, W. B. P. S., Perera, S. P. P. M., Vithanarachchi, R. M., Wijesekera R. D., & Wijesinghe M. R. (2020). Heavy metal accumulation in two synanthropic avian species in Sri Lanka. Environmental Monitoring and Assessment, 192, 688 http://dx.doi.org/10.1007/s10661-020-08654-y
18. Gamberg, M., Pratte, I., Brammer, J., Cuyler, C., Elkin, B., Gurney, K., Kutz, S., Larter, N. C., Muir, D., Wang, X., Provencher J. F., & Gamberg, M. (2020). Renal trace elements in barren-ground caribou subpopulations: Temporal trends and differing effects of sex, age and season. The Science of the Total Environment, 1, 724:138305. http://dx.doi.org/0.1016/j.scitotenv.2020.138305
19. Janssens, E., Janssens, E., Dauwe, T., Van Duyse, E., Beernaert, J., Pinxten, R., & Eens, M. (2003). Effects of heavy metal exposure on aggressive behavior in a small territorial songbird. Archives of Environmental Contamination and Toxicology, 45, 121–127. http://dx.doi.org/10.1007/s00244-002-0133-7
20. Joshua, G., Ali, Z., Ayub, M., & Nadeem, S. I. (2021). Heavy metal contamination in wild avian species inhabiting human-modified habitats. Environmental Monitoring and Assessment, 20, 193(9), 588. http://dx.doi.org/10.1007/s10661-021-09387-2
21. Kar, P., & Misra, M. (2004). Zinc transporters. Journal of Chemical Technology and Biotechnology, 79(11),1313-1319.
22. Kar, I., & Patra, A. (2021). Tissue Bioaccumulation and Toxicopathological Effects of Cadmium and Its Dietary Amelioration in Poultry—a Review. Biological Trace Element Research, 199. http://dx.doi.org/10.1007/s12011-020-02503-2
23. Korbecki, J., Gutowska, I., Chlubek, D., & Baranowska-Bosiacka I. (2019). Lead (Pb) in the tissues of Anatidae, Ardeidae, Sternidae and Laridae of the Northern Hemisphere: a review of environmental studies. Environmental Science and Pollution Research, 26(13), 12631–12647. http://dx.doi.org/10.1007/s11356-019-04799-7
24. Lock, J. W., Thompson, D. R., Furness, R. W. & Bartle J. A. (1992). Metal concentration in seabirds of the New Zealand region. Environmental Science and Pollution Research, 75, 289-300. http://dx.doi.org/10.1016/0269-7491(92)90129-x
25. Masterov, V. B., & Romanov, M. S. (2022). Reproduction efficiency of the Steller's sea Eagle on Sakhalin Island and the lower Amur (Russia). Nature Conservation Research, 7, S1, 1-13. http://dx.doi.org/10.24189/ncr.2022.002. – EDN OJRQQN.
26. Mukherjee, A., Pal, S., Das, P., & Mukhopadhyay, S. (2022). Heavy metal exposure to a migratory waterfowl, Northern Pintail (Anas acuta), in two peri-urban wetlands. Science of The Total Environment, 851, 158238. http://dx.doi.org/10.1016/j.scitotenv.2022.158238
27. Pereira, A. M., Maia, M. R. G., Fonseca, A. J. M., & Cabrita, A. R. J. (2021). Zinc in Dog Nutrition, Health and Disease: A Review. Animals (Basel), 11(4), 978. http://dx.doi.org/10.3390/ani1104097
28. Poesel, A., Nelson, D. A., Gibbs, H. L., & Olesik, J. W. (2008). Use of trace element analysis of feathers as a tool to track fine-scale dispersal in birds. Behavioral Ecology and Sociobiology, 63, 153–158. https://doi.org/10.1007/s00265-008-0644-y
29. Santos, A., Recktenvald, M., Carvalho, D., Puerta, E., Sousa-Filho, I., Dórea, J., & Bastos, W. (2021). Mercury in birds (aquatic and scavenger) from the Western Amazon. Environmental Research, 201, 111574. https://doi.org/10.1016/j.envres.2021.111574
30. Sengupta, P., Banerjee, R., Nath, S., Das, S. & Banerjee S. (2015). Metals and female reproductive toxicity. Human & Experimental Toxicology, 34(7), 679-697. https://doi.org/10.1177/0960327114559611
31. Yao, T., Zhu, G., Zhang, Y., Yan, P., Li, C., de Boer W. F. (2021). Bird's feather as an effective bioindicator for detection of trace elements in polymetallic contaminated areas in Anhui Province, China. The Science of the Total Environment, 1, 771:144816. https://doi.org/10.1016/j.scitotenv.2020.144816
Review
For citations:
Stepanova M.V. Birds of Prey as Indicators of the State of the Environment in Urban Areas. Health, Food & Biotechnology. 2022;4(3):19- 27. (In Russ.) https://doi.org/10.36107/hfb.2022.i3.s152