Preview

Health, Food & Biotechnology

Расширенный поиск

Интеллектуальная упаковка для овощей и фруктов, классификация и перспективы использования: Обзор предметного поля

https://doi.org/10.36107/hfb.2023.i1.s165

Аннотация

Введение. Упаковка пищевых продуктов имеет важное значение для предотвращения загрязнения пищевых продуктов химическими веществами, пылью, физического повреждения, воздействия температуры, света, влажности и микроорганизмов, а кроме того, является эффективным средством продления срока хранения и сокращения пищевых потерь и порчи. 

Цель статьи выполнить обзор интеллектуальных методов упаковки фруктов и овощей, проанализировать последние достижения в области целевых метаболитов, которые применяют для обнаружения в интеллектуальной упаковке. 

Материалы и методы. В обзор включены зарубежные статьи опубликованные на английском языке за период 2010 - 2022 год. Поиск зарубежной научной литературы на английском языке по данной теме проводили в библиографических базах Google Scholar, Scopus, Web of Science, ResearchGate и издательстве Elsevier. При отборе публикаций для обзора приоритет отдавали высокоцитируемым источникам.

Результаты. Интеллектуальные упаковочные системы применяются для мониторинга в режиме реального времени фруктов и овощей, мясных и молочных продуктов в цепочке поставок, посредством взаимодействия между небольшими компонентами внутри упаковки, такими как колориметрические индикаторные этикетки, датчики и целевые ответчики для предоставления поставщикам и потребителям точной информации о качестве продукта и параметрах окружающей среды. Несмотря на многие преимущества инновационной упаковки для пищевых продуктов, включающей в себя повышение эффективности использования продуктов и пищевого сырья, снижение проблем с безопасностью пищевых продуктов и минимизацию отходов, существуют проблемы, препятствующие широкому промышленному внедрению данной упаковки для фруктов и овощей.  В первую очередь необходимо учитывать безопасность интеллектуальных компонентов упаковки, включая миграцию химических красителей в колориметрических индикаторных этикетках и химических датчиках, а также возможность химического взаимодействия между интеллектуальными упаковочными материалами и пищевыми компонентами.   В настоящее время производство интеллектуальной упаковки для фруктов и овощей сосредоточено в основном в небольших лабораториях и не учитывает производственные затраты. Для снижения стоимости интеллектуальных упаковочных материалов и обработки необходимы дальнейшие научные изыскания и более глубокие исследования.

Выводы. Разработанная интеллектуальная активная упаковка используется для мониторинга качества фруктов и овощей, безопасности и условий окружающей среды в режиме реального времени, как для быстрого выявления дефектов качества фруктов и овощей, так и для предоставления визуальной и актуальной информации.  Вместе с тем дальнейшие научные исследования должны быть направлены на решение проблем, связанных с оценкой безопасности, правовым регулированием, управлением затратами и другими факторами, с целью максимального использования в условиях промышленного производства и реализации продуктов потребителю.

Об авторах

Леонид Чеславович Бурак
ООО "БЕЛРОСАКВА"
Беларусь


Александр Николаевич Сапач
ООО "БЕЛРОСАКВА"
Беларусь


Максим Иванович Писарик
ООО "БЕЛРОСАКВА"
Беларусь


Список литературы

1. Adiani, V., Gupta, S., & Variyar, P. S. (2021). A simple time temperature indicator for real time microbial assessment in minimally processed fruits. Journal of Food Engineering, 311, 110731. https://doi.org/10.1016/j.jfoodeng.2021.110731

2. Alam, A. U., Rathi, P., Beshai, H., Sarabha, G. K., & Deen, M. J. (2021). Fruit quality monitoring with smart packaging. Sensors, 21(4), 1509. https://doi.org/10.3390/s21041509

3. Alegbeleye, O., Odeyemi, O. A., Strateva, M., & Stratev, D. (2022). Microbial spoilage of vegetables, fruits and cereals. Applied Food Research, 2(1), 100122. https://doi.org/10.1016/j.afres.2022.100122

4. Alfian, G., Syafrudin, M., Farooq, U., Ma'arif, M. R., Syaekhoni, M. A., Fitriyani, N. L., Lee, J., & Rhee, J. (2020). Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model. Food Control, 110, 107016. https://doi.org/10.1016/j.foodcont.2019.107016

5. Almasi, H., Forghani, S., & Moradi, M. (2022). Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packaging and Shelf Life, 32, 100839. https://doi.org/10.1016/j.fpsl.2022.100839

6. Ardiyansyah, Kurnianto, M. F., Poerwanto, B., Wahyono, A., Apriliyanti, M. W., & Lestari, I. P. (2020). Monitoring of banana deteriorations using intelligent-packaging containing brazilien extract (Caesalpina sappan L.). IOP Conference Series: Earth and Environmental Science, 411(1), 012043. https://doi.org/10.1088/1755-1315/411/1/012043

7. Badia-Melis, R., Ruiz-Garcia, L., Garcia-Hierro, J., & Villalba, J. I. R. (2015). Refrigerated fruit storage monitoring combining two different wireless sensing technologies: RFID and WSN. Sensors, 15(3), 4781– 4795. https://doi.org/10.3390/s150304781

8. Baek, S., Maruthupandy, M., Lee, K., Kim, D., & Seo, J. (2020). Freshness indicator for monitoringchanges in quality of packaged kimchi during storage. Food Packaging andShelf Life, 25, 100528. https://doi.org/10.1016/j.fpsl.2020.100528

9. Balbinot-Alfaro, E., Craveiro, D. V., Lima, K. O., Costa, H. L. G., Lopes, D. R., & Prentice, C. (2019). Intelligent packaging with pH indicator potential. Food Engineering Reviews, 11(4), 235– 244. https://doi.org/10.1007/s12393-019-09198-9

10. Bashir, H. A., & Abu-Goukh, A.-B. A. (2003). Compositional changes during guava fruit ripening. Food Chemistry, 80(4), 557– 563. https://doi.org/10.1016/S0308-8146(02)00345-X

11. Becerril, R., Nerín, C., & Silva, F. (2021). Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends in Food Science & Technology, 111, 495– 505. https://doi.org/10.1016/j.tifs.2021.02.042

12. Betemps, D. L., Fachinello, J. C., Galarça, S. P., Portela, N. M., Remorini, D., Massai, R., & Agati, G. (2012). Non-destructive evaluation of ripening and quality traits in apples using a multiparametric fluorescence sensor. Journal of the Science of Food and Agriculture, 92(9), 1855– 1864. https://doi.org/10.1002/jsfa.5552

13. Bhargava, N., Sharanagat, V. S., Mor, R. S., & Kumar, K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends in Food Science & Technology, 105, 385– 401. https://doi.org/10.1016/j.tifs.2020.09.015

14. Bibi, F., Guillaume, C., Gontard, N., & Sorli, B. (2017). A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products. Trends in Food Science & Technology, 62, 91– 103. https://doi.org/10.1016/j.tifs.2017.01.013

15. Bobelyn, E., Hertog, M. L. A. T. M., & Nicolaï, B. M. (2006). Applicability of an enzymatic time temperature integrator as a quality indicator for mushrooms in the distribution chain. Postharvest Biology and Technology, 42(1), 104– 114. https://doi.org/10.1016/j.postharvbio.2006.05.011

16. Borchert, N. B., Cruz-Romero, M. C., Mahajan, P. V., Ren, M., Papkovsky, D. B., & Kerry, J. P. (2014). Application of gas sensing technologies for non-destructive monitoring of headspace gases (O2 and CO2) during chilled storage of packaged mushrooms (Agaricus bisporus) and their correlation with product quality parameters. Food Packaging and Shelf Life, 2(1), 17– 29. https://doi.org/10.1016/j.fpsl.2014.05.001

17. Cao, Y., & Mezzenga, R. (2020). Design principles of food gels. Nature Food, 1(2), 106– 118. https://doi.org/10.1038/s43016-019-0009-x

18. Caprioli, F., & Quercia, L. (2014). Ethylene detection methods in post-harvest technology: A review. Sensors and Actuators B: Chemical, 203, 187– 196. https://doi.org/10.1016/j.snb.2014.06.109

19. Chen, H., Lin, H., Jiang, X., Lin, M., & Fan, Z. (2022). Amelioration of chilling injury and enhancement of quality maintenance in cold-stored guava fruit by melatonin treatment. Food Chemistry: X, 14, 100297. https://doi.org/10.1016/j.fochx.2022.100297

20. Chen, H., Zhang, M., Bhandari, B., & Guo, Z. (2018). Applicability of a colorimetric indicator label for monitoring freshness of fresh-cut green bell pepper. Postharvest Biology and Technology, 140, 85– 92. https://doi.org/10.1016/j.postharvbio.2018.02.011

21. Chen, L., Pu, Y., Xu, Y., He, X., Cao, J., Ma, Y., & Jiang, W. (2022). Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables. Food Research International, 157, 111202. https://doi.org/10.1016/j.foodres.2022.111202

22. Cheng, H., Xu, H., McClements, D. J., Chen, L., Jiao, A., Tian, Y., Miao, M., & Jin, Z. (2022). Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chemistry, 375, 131738. https://doi.org/10.1016/j.foodchem.2021.131738

23. Choi, I., & Han, J. (2018). Development of a novel on–off type carbon dioxide indicator based on interactions between sodium caseinate and pectin. Food Hydrocolloids, 80, 15– 23. https://doi.org/10.1016/j.foodhyd.2018.01.028

24. da Silva Filipini, G., Romani, V. P., & Guimarães Martins, V. (2020). Biodegradable and active-intelligent films based on methylcellulose and jambolão (Syzygium cumini) skins extract for food packaging. Food Hydrocolloids, 109, 106139. https://doi.org/10.1016/j.foodhyd.2020.106139

25. Deng, Y., Liu, K., Liu, Y., Dong, H., & Li, S. (2016). An novel acetylcholinesterase biosensor based on nano-porous pseudo carbon paste electrode modified with gold nanoparticles for detection of methyl parathion. Journal of Nanoscience and Nanotechnology, 16(9), 9460– 9467. https://doi.org/10.1166/jnn.2016.13059

26. de Oliveira Filho, J. G., Bertolo, M. R. V., Rodrigues, M. Á. V., Marangon, C. A., da Silva, G. C., Odoni, F. C. A., & Egea, M. B. (2021). Curcumin: A multifunctional molecule for the development of smart and active biodegradable polymer-based films. Trends in Food Science & Technology, 118, 840– 849. https://doi.org/10.1016/j.tifs.2021.11.005

27. Dirpan, A., Latief, R., Syarifuddin, A., Rahman, A. N. F., Putra, R. P., & Hidayat, S. H. (2018). The use of colour indicator as a smart packaging system for evaluating mangoes Arummanis (Mangifera indica L. var. Arummanisa) freshness. IOP Conference Series: Earth and Environmental Science, 157(1), 012031. https://doi.org/10.1088/1755-1315/157/1/012031

28. Eom, K.-H., Hyun, K.-H., Lin, S., & Kim, J.-W. (2014). The meat freshness monitoring system using the smart RFID tag. International Journal of Distributed Sensor Networks, 10(7), 591812. https://doi.org/10.1155/2014/591812

29. Eom, K. H., Kim, M. C., Lee, S., & won Lee, C. (2012). The vegetable freshness monitoring system using RFID with oxygen and carbon dioxide sensor. International Journal of Distributed Sensor Networks, 8(6), 472986. https://doi.org/10.1155/2012/472986

30. Etxabide, A., Kilmartin, P. A., & Maté, J. I. (2021). Color stability and pH-indicator ability of curcumin, anthocyanin and betanin containing colorants under different storage conditions for intelligent packaging development. Food Control, 121, 107645. https://doi.org/10.1016/j.foodcont.2020.107645

31. FAO. (2019). The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. Rome. License: CC BY-NC-SA 3.0 IGO. Retrieved from https://www.fao.org/state-of-food-agriculture/2019/en/. Accessed July 1, 2022.

32. FAO. (2021). Fruit and vegetables - your dietary essentials. The International Year of Fruits and Vegetables, 2021, background paper. Food Agric Org Rome. https://doi.org/10.4060/cb2395en

33. Fernandez, C. M., Alves, J., Gaspar, P. D., Lima, T. M., & Silva, P. D. (2022). Innovative processes in smart packaging. A systematic review. Journal of the Science of Food and Agriculture, 11863. https://doi.org/10.1002/jsfa.11863

34. Firouz, M. S., Mohi-Alden, K., & Omid, M. (2021). A critical review on intelligent and active packaging in the food industry: Research and development. Food Research International, 141, 110113. https://doi.org/10.1016/j.foodres.2021.110113

35. Flórez, M., Guerra-Rodríguez, E., Cazón, P., & Vázquez, M. (2022). Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocolloids, 124, 107328. https://doi.org/10.1016/j.foodhyd.2021.107328

36. Gao, T., Tian, Y., Zhu, Z., & Sun, D.-W. (2020). Modelling, responses and applications of time-temperature indicators (TTIs) in monitoring fresh food quality. Trends in Food Science & Technology, 99, 311– 322. https://doi.org/10.1016/j.tifs.2020.02.019

37. Ghaani, M., Cozzolino, C. A., Castelli, G., & Farris, S. (2016). An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology, 51, 1– 11. https://doi.org/10.1016/j.tifs.2016.02.008

38. Guo, R., Xue, L., Jin, N., Duan, H., Li, M., & Lin, J. (2022). Power-free microfluidic biosensing of Salmonella with slide multivalve and disposable syringe. Biosensors and Bioelectronics, 213, 114458. https://doi.org/10.1016/j.bios.2022.114458

39. Guo, Z., Zuo, H., Ling, H., Yu, Q., Gou, Q., & Yang, L. (2022). A novel colorimetric indicator film based on watermelon peel pectin and anthocyanins from purple cabbage for monitoring mutton freshness. Food Chemistry, 383, 131915. https://doi.org/10.1016/j.foodchem.2021.131915

40. Han, J.-W., Ruiz-Garcia, L., Qian, J.-P., & Yang, X.-T. (2018). Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17(4), 860– 877. https://doi.org/10.1111/1541-4337.12343

41. Hills, K. D., Oliveira, D. A., Cavallaro, N. D., Gomes, C. L., & McLamore, E. S. (2018). Actuation of chitosan-aptamer nanobrush borders for pathogen sensing. Analyst, 143(7), 1650– 1661. https://doi.org/10.1039/C7AN02039B

42. Hu, B., Sun, D.-W., Pu, H., & Wei, Q. (2019). Recent advances in detecting and regulating ethylene concentrations for shelf-life extension and maturity control of fruit: A review. Trends in Food Science & Technology, 91, 66– 82. https://doi.org/10.1016/j.tifs.2019.06.010

43. Hu, X. G., Li, X., Park, S. H., Kim, Y.-H., & Yang, S. I. (2016). Nondestructive monitoring of kiwi ripening process using colorimetric ethylene sensor. Bulletin of the Korean Chemical Society, 37(5), 759– 762. https://doi.org/10.1002/bkcs.10745

44. Iskandar, A., Yuliasih, I., & Warsiki, E. (2020). Performance improvement of fruit ripeness smart label based on ammonium molibdat color indicators. Indonesian Food Science and Technology Journal, 3(2), 48– 57. https://doi.org/10.22437/ifstj.v3i2.10178

45. Jafarzadeh, S., Nafchi, A. M., Salehabadi, A., Oladzad-abbasabadi, N., & Jafari, S. M. (2021). Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science, 291, 102405. https://doi.org/10.1016/j.cis.2021.102405

46. Jiang, H., Zhang, W., Xu, Y., Zhang, Y., Pu, Y., Cao, J., & Jiang, W. (2021). Applications of plant-derived food by-products to maintain quality of postharvest fruits and vegetables. Trends in Food Science & Technology, 116, 1105– 1119. https://doi.org/10.1016/j.tifs.2021.09.010

47. Joshi, N., Rawat, K., & Bohidar, H. B. (2018). pH and ionic strength induced complex coacervation of pectin and gelatin A. Food Hydrocolloids, 74, 132– 138. https://doi.org/10.1016/j.foodhyd.2017.08.011

48. Jung, S., Cui, Y., Barnes, M., Satam, C., Zhang, S., Chowdhury, R. A., Adumbumkulath, A., Sahin, O., Miller, C., Sajadi, S. M., Sassi, L. M., Ji, Y., Bennett, M. R., Yu, M., Friguglietti, J., Merchant, F. A., Verduzco, R., Roy, S., Vajtai, R., … Ajayan, P. M. (2020). Multifunctional bio-nanocomposite coatings for perishable fruits. Advanced Materials, 32(26), 1908291. https://doi.org/10.1002/adma.201908291

49. Kaewnu, K., Samoson, K., Thiangchanya, A., Phonchai, A., & Limbut, W. (2022). A novel colorimetric indicator for ethanol detection in preserved baby mangoes. Food Chemistry, 369, 130769. https://doi.org/10.1016/j.foodchem.2021.130769

50. Kalpana, S., Priyadarshini, S. R., Leena, M. M., Moses, J. A., & Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93, 145– 157. https://doi.org/10.1016/j.tifs.2019.09.008

51. Kayitmazer, A. B., Seeman, D., Minsky, B. B., Dubin, P. L., & Xu, Y. (2013). Protein–polyelectrolyte interactions. Soft Matter, 9(9), 2553– 2583. https://doi.org/10.1039/C2SM27002A

52. Keshri, N., Truppel, I., Herppich, W. B., Geyer, M., Weltzien, C., & Mahajan, P. V. (2019). Development of sensor system for real-time measurement of respiration rate of fresh produce. Computers and Electronics in Agriculture, 157, 322– 328. https://doi.org/10.1016/j.compag.2019.01.006

53. Keshri, N., Truppel, I., Herppich, W. B., Geyer, M., Weltzien, C., & Mahajan, P. V. (2020). In-situ measurement of fresh produce respiration using a modular sensor-based system. Sensors, 20(12), 3589. https://doi.org/10.3390/s20123589

54. Kim, Y. H., Yang, Y. J., Kim, J. S., Choi, D. S., Park, S. H., Jin, S. Y., & Park, J. S. (2018). Non-destructive monitoring of apple ripeness using an aldehyde sensitive colorimetric sensor. Food Chemistry, 267, 149– 156. https://doi.org/10.1016/j.foodchem.2018.02.110

55. Kuswandi, B., Maryska, C., Jayus, Abdullah, A., & Heng, L. Y. (2013). Real time on-package freshness indicator for guavas packaging. Journal of Food Measurement and Characterization, 7(1), 29– 39. https://doi.org/10.1007/s11694-013-9136-5

56. Kuswandi, B., & Murdyaningsih, E. A. (2017). Simple on package indicator label for monitoring of grape ripening process using colorimetric pH sensor. Journal of Food Measurement and Characterization, 11(4), 2180– 2194. https://doi.org/10.1007/s11694-017-9603-5

57. Lang, C., & Hübert, T. (2012). A colour ripeness indicator for apples. Food and Bioprocess Technology, 5(8), 3244– 3249. https://doi.org/10.1007/s11947-011-0694-4

58. Lee, K., Baek, S., Kim, D., & Seo, J. (2019). A freshness indicator for monitoring chicken-breast spoilage using a Tyvek® sheet and RGB color analysis. Food Packaging and Shelf Life, 19, 40– 46. https://doi.org/10.1016/j.fpsl.2018.11.016

59. Liang, Y., Yao, Y., Liu, Y., Li, Y., Xu, C., Fu, L., & Lin, B. (2022). Curcumin-loaded HKUST-1@ carboxymethyl starch-based composites with moisture-responsive release properties and synergistic antibacterial effect for perishable fruits. International Journal of Biological Macromolecules, 214, 181– 191. https://doi.org/10.1016/j.ijbiomac.2022.06.022

60. Liu, L., Wu, W., Zheng, L., Yu, J., Sun, P., & Shao, P. (2022). Intelligent packaging films incorporated with anthocyanins-loaded ovalbumin-carboxymethyl cellulose nanocomplexes for food freshness monitoring. Food Chemistry, 387, 132908. https://doi.org/10.1016/j.foodchem.2022.132908

61. Liu, M., Zhang, J., Liu, S., & Li, B. (2022). A label-free visual aptasensor for zearalenone detection based on target-responsive aptamer-cross-linked hydrogel and color change of gold nanoparticles. Food Chemistry, 389, 133078. https://doi.org/10.1016/j.foodchem.2022.133078

62. Liu, X., Le Bourvellec, C., Yu, J., Zhao, L., Wang, K., Tao, Y., Renard, C. M. G. C., & Hu, Z. (2022). Trends and challenges on fruit and vegetable processing: Insights into sustainable, traceable, precise, healthy, intelligent, personalized and local innovative food products. Trends in Food Science & Technology, 125, 12– 25. https://doi.org/10.1016/j.tifs.2022.04.016

63. Liu, Y., Ma, Y., Feng, T., Luo, J., Sameen, D. E., Hossen, M. A., Dai, J., Li, S., & Qin, W. (2021). Development and characterization of aldehyde-sensitive cellulose/chitosan/beeswax colorimetric papers for monitoring kiwifruit maturity. International Journal of Biological Macromolecules, 187, 566– 574. https://doi.org/10.1016/j.ijbiomac.2021.07.132

64. Liu, Y., Wang, R., Wang, D., Sun, Z., Liu, F., Zhang, D., & Wang, D. (2022). Development of a food packaging antibacterial hydrogel based on gelatin, chitosan, and 3-phenyllactic acid for the shelf-life extension of chilled chicken. Food Hydrocolloids, 127, 107546. https://doi.org/10.1016/j.foodhyd.2022.107546

65. Lu, P., Liu, R., Liu, X., & Wu, M. (2018). Preparation of Self-supporting bagasse cellulose nanofibrils hydrogels induced by zinc ions. Nanomaterials, 8(10), 800. https://doi.org/10.3390/nano8100800

66. Luo, X., Zaitoon, A., & Lim, L.-T. (2022). A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Comprehensive Reviews in Food Science and Food Safety, 21(3), 2489– 2519. https://doi.org/10.1111/1541-4337.12942

67. Ma, Q., & Wang, L. (2016). Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sensors and Actuators B: Chemical, 235, 401– 407. https://doi.org/10.1016/j.snb.2016.05.107

68. Maftoonazad, N., & Ramaswamy, H. (2019). Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab). Polymer Testing, 75, 76– 84. https://doi.org/10.1016/j.polymertesting.2019.01.011

69. Miller, K., Reichert, C. L., & Schmid, M. (2021). Biogenic amine detection systems for intelligent packaging concepts: Meat and meat products. Food Reviews International, 1– 25. https://doi.org/10.1080/87559129.2021.1961270

70. Mohammadian, E., Alizadeh-Sani, M., & Jafari, S. M. (2020). Smart monitoring of gas/temperature changes within food packaging based on natural colorants. Comprehensive Reviews in Food Science and Food Safety, 19(6), 2885– 2931. https://doi.org/10.1111/1541-4337.12635

71. Mohd Ali, M., Hashim, N., & Shahamshah, M. I. (2021). Durian (Durio zibethinus) ripeness detection using thermal imaging with multivariate analysis. Postharvest Biology and Technology, 176, 111517. https://doi.org/10.1016/j.postharvbio.2021.111517

72. Müller, P., & Schmid, M. (2019). Intelligent packaging in the food sector: A brief overview. Foods, 8(1), 16. https://doi.org/10.3390/foods8010016

73. Mutreja, R., Jariyal, M., Pathania, P., Sharma, A., Sahoo, D. K., & Suri, C. R. (2016). Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples. Biosensors and Bioelectronics, 85, 707– 713. https://doi.org/10.1016/j.bios.2016.05.079

74. Nguyen, L. H., Oveissi, F., Chandrawati, R., Dehghani, F., & Naficy, S. (2020). Naked-eye detection of ethylene using thiol-functionalized polydiacetylene-based flexible sensors. ACS Sensors, 5(7), 1921– 1928. https://doi.org/10.1021/acssensors.0c00117

75. Niponsak, A., Laohakunjit, N., & Kerdchoechuen, O. (2015). Contribution to volatile fingerprinting and physico-chemical qualities of minimally processed Durian cv. ‘Monthong’ during storage: Identification of a novel chemical ripeness marker. Food and Bioprocess Technology, 8(6), 1229– 1243. https://doi.org/10.1007/s11947-015-1486-z

76. Niponsak, A., Laohakunjit, N., Kerdchoechuen, O., & Wongsawadee, P. (2016). Development of smart colourimetric starch–based indicator for liberated volatiles during durian ripeness. Food Research International, 89, 365– 372. https://doi.org/10.1016/j.foodres.2016.08.038

77. Niponsak, A., Laohakunjit, N., Kerdchoechuen, O., Wongsawadee, P., & Uthairatanakij, A. (2020). Novel ripeness label based on starch/chitosan incorporated with pH dye for indicating eating quality of fresh–cut durian. Food Control, 107, 106785. https://doi.org/10.1016/j.foodcont.2019.106785

78. Otoni, C. G., Azeredo, H. M. C., Mattos, B. D., Beaumont, M., Correa, D. S., & Rojas, O. J. (2021). The food–materials nexus: Next generation bioplastics and advanced materials from agri-food residues. Advanced Materials, 33(43), 2102520. https://doi.org/10.1002/adma.202102520

79. Pathak, N., Caleb, O. J., Rauh, C., & Mahajan, P. V. (2017). Effect of process variables on ethylene removal by vacuum ultraviolet radiation: Application in fresh produce storage. Biosystems Engineering, 159, 33– 45. https://doi.org/10.1016/j.biosystemseng.2017.04.008

80. Pereira, V. A., de Arruda, I. N. Q., & Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocolloids, 43, 180– 188. https://doi.org/10.1016/j.foodhyd.2014.05.014

81. Perumal, A. B., Huang, L., Nambiar, R. B., He, Y., Li, X., & Sellamuthu, P. S. (2022). Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chemistry, 375, 131810. https://doi.org/10.1016/j.foodchem.2021.131810

82. Pirsa, S. (2021). Nanocomposite base on carboxymethylcellulose hydrogel: Simultaneous absorbent of ethylene and humidity to increase the shelf life of banana fruit. International Journal of Biological Macromolecules, 193, 300– 310. https://doi.org/10.1016/j.ijbiomac.2021.10.075

83. Pirsa, S., & Chavoshizadeh, S. (2018). Design of an optical sensor for ethylene based on nanofiber bacterial cellulose film and its application for determination of banana storage time. Polymers for Advanced Technologies, 29(5), 1385– 1393. https://doi.org/10.1002/pat.4250

84. Pirsa, S., Sani, I. K., & Mirtalebi, S. S. (2022). Nano-biocomposite based color sensors: Investigation of structure, function, and applications in intelligent food packaging. Food Packaging and Shelf Life, 31, 100789. https://doi.org/10.1016/j.fpsl.2021.100789

85. Qi, W., Wang, H., Zhou, Z., Yang, P., Wu, W., Li, Z., & Li, X. (2020). Ethylene emission as a potential indicator of Fuji apple flavor quality evaluation under low temperature. Horticultural Plant Journal, 6(4), 231– 239. https://doi.org/10.1016/j.hpj.2020.03.007

86. Qin, Y., Liu, Y., Yong, H., Liu, J., Zhang, X., & Liu, J. (2019). Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. International Journal of Biological Macromolecules, 134, 80– 90. https://doi.org/10.1016/j.ijbiomac.2019.05.029

87. Rahman, A. T. M. M., Kim, D. H., Jang, H. D., Yang, J. H., & Lee, S. J. (2018). Preliminary study on biosensor-type time-temperature integrator for intelligent food packaging. Sensors, 18(6), 1949. https://doi.org/10.3390/s18061949

88. Shao, P., Liu, L., Yu, J., Lin, Y., Gao, H., Chen, H., & Sun, P. (2021). An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends in Food Science & Technology, 118, 285– 296. https://doi.org/10.1016/j.tifs.2021.10.012

89. Shao, P., Liu, L., Yu, J., Zheng, L., & Sun, P. (2022). Novel aldehyde sensitive bio-based colorimetric film for kiwi fruit freshness monitoring. LWT, 159, 113177. https://doi.org/10.1016/j.lwt.2022.113177

90. Shu, C., Zhang, W., Zhao, H., Cao, J., & Jiang, W. (2020). Chlorogenic acid treatment alleviates the adverse physiological responses of vibration injury in apple fruit through the regulation of energy metabolism. Postharvest Biology and Technology, 159, 110997. https://doi.org/10.1016/j.postharvbio.2019.110997

91. Sohail, M., Sun, D.-W., & Zhu, Z. (2018). Recent developments in intelligent packaging for enhancing food quality and safety. Critical Reviews in Food Science and Nutrition, 58(15), 2650– 2662. https://doi.org/10.1080/10408398.2018.1449731

92. Tang, Q., Shi, X., Hou, X., Zhou, J., & Xu, Z. (2014). Development of molecularly imprinted electrochemical sensors based on Fe3O4@MWNT-COOH/CS nanocomposite layers for detecting traces of acephate and trichlorfon. Analyst, 139(24), 6406– 6413. https://doi.org/10.1039/C4AN01514B

93. Tarone, A. G., Cazarin, C. B. B., & Junior, M. R. M. (2020). Anthocyanins: New techniques and challenges in microencapsulation. Food Research International, 133, 109092. https://doi.org/10.1016/j.foodres.2020.109092

94. Umapathi, R., Ghoreishian, S. M., Sonwal, S., Rani, G. M., & Huh, Y. S. (2022). Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coordination Chemistry Reviews, 453, 214305. https://doi.org/10.1016/j.ccr.2021.214305

95. Valente, J., Almeida, R., & Kooistra, L. (2019). A comprehensive study of the potential application of flying ethylene-sensitive sensors for ripeness detection in apple orchards. Sensors, 19(2), 372. https://doi.org/10.3390/s19020372

96. Vanderroost, M., Ragaert, P., Devlieghere, F., & De Meulenaer, B. (2014). Intelligent food packaging: The next generation. Trends in Food Science & Technology, 39(1), 47– 62. https://doi.org/10.1016/j.tifs.2014.06.009

97. Wallace, T. C., Bailey, R. L., Blumberg, J. B., Burton-Freeman, B., Chen, C. O., Crowe-White, K. M., Drewnowski, A., Hooshmand, S., Johnson, E., Lewis, R., Murray, R., Shapses, S. A., & Wang, D. D. (2020). Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Critical Reviews in Food Science and Nutrition, 60(13), 2174– 2211. https://doi.org/10.1080/10408398.2019.1632258

98. Wang, J., Li, D., Ye, Y., Qiu, Y., Liu, J., Huang, L., Liang, B., & Chen, B. (2021). A fluorescent metal–organic framework for food real-time visual monitoring. Advanced Materials, 33(15), 2008020. https://doi.org/10.1002/adma.202008020

99. Warsiki, E., & Rofifah, N. (2018). Dragon fruit freshness detector based on methyl red colour indicator. IOP Conference Series: Earth and Environmental Science, 209, 012016. https://doi.org/10.1088/1755-1315/209/1/012016

100. Yang, J., & Xu, Y. (2021). Prediction of fruit quality based on the RGB values of time–temperature indicator. Journal of Food Science, 86(3), 932– 941. https://doi.org/10.1111/1750-3841.15518

101. Yao, Y., Deng, Y., Liang, Y., Li, X., Tang, X., Lin, M., Xu, C., Fu, L., & Lin, B. (2022). Convenient, nondestructive monitoring and sustained-release of ethephon/chitosan film for on-demand of fruit ripening. International Journal of Biological Macromolecules, 214, 338– 347. https://doi.org/10.1016/j.ijbiomac.2022.06.086

102. Yong, H., & Liu, J. (2020). Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life, 26, 100550. https://doi.org/10.1016/j.fpsl.2020.100550

103. Yue, X. Q., Shang, Z. Y., Yang, J. Y., Huang, L., & Wang, Y. Q. (2020). A smart data-driven rapid method to recognize the strawberry maturity. Information Processing in Agriculture, 7(4), 575– 584. https://doi.org/10.1016/j.inpa.2019.10.005

104. Zhang, D., & Chen, L. (2021). Design and research of intelligent interaction in fresh fruit and vegetable packaging. Packaging Engineering, 42(4), 202– 209. https://doi.org/10.19554/j.cnki.1001-3563.2021.04.029

105. Zhang, W., Jiang, H., Zhang, Y., Cao, J., & Jiang, W. (2021). Synergistic effects of 1-MCP and hot air treatments on delaying softening and promoting anthocyanin biosynthesis in nectarines. Postharvest Biology and Technology, 180, 111598. https://doi.org/10.1016/j.postharvbio.2021.111598

106. Zhang, W., Li, X., & Jiang, W. (2020). Development of antioxidant chitosan film with banana peels extract and its application as coating in maintaining the storage quality of apple. International Journal of Biological Macromolecules, 154, 1205– 1214. https://doi.org/10.1016/j.ijbiomac.2019.10.275

107. Zhang, W., Shu, C., Chen, Q., Cao, J., & Jiang, W. (2019). The multi-layer film system improved the release and retention properties of cinnamon essential oil and its application as coating in inhibition to penicillium expansion of apple fruit. Food Chemistry, 299, 125109. https://doi.org/10.1016/j.foodchem.2019.125109

108. Zhang, W., Zhao, H., Jiang, H., Xu, Y., Cao, J., & Jiang, W. (2020). Multiple 1-MCP treatment more effectively alleviated postharvest nectarine chilling injury than conventional one-time 1-MCP treatment by regulating ROS and energy metabolism. Food Chemistry, 330, 127256. https://doi.org/10.1016/j.foodchem.2020.127256

109. Zhang, W., Zhao, H., Zhang, J., Sheng, Z., Cao, J., & Jiang, W. (2019). Different molecular weights chitosan coatings delay the senescence of postharvest nectarine fruit in relation to changes of redox state and respiratory pathway metabolism. Food Chemistry, 289, 160– 168. https://doi.org/10.1016/j.foodchem.2019.03.047

110. Zhang, X., Guo, M., Ismail, B. B., He, Q., Jin, T. Z., & Liu, D. (2021). Informative and corrective responsive packaging: Advances in farm-to-fork monitoring and remediation of food quality and safety. Comprehensive Reviews in Food Science and Food Safety, 20(5), 5258– 5282. https://doi.org/10.1111/1541-4337.12807

111. Zhang, Y., Li, H., Yao, Y., Shen, X., Xu, C., Fu, L., & Lin, B. (2022). Multifunctional flexible Ag-MOFs@CMFP composite paper for fruit preservation and real-time wireless monitoring of fruit quality during storage and transportation. Food Chemistry, 395, 133614. https://doi.org/10.1016/j.foodchem.2022.133614

112. Zhao, M., Wang, P., Guo, Y., Wang, L., Luo, F., Qiu, B., Guo, L., Su, X., Lin, Z., & Chen, G. (2018). Detection of aflatoxin B1 in food samples based on target-responsive aptamer-cross-linked hydrogel using a handheld pH meter as readout. Talanta, 176, 34– 39. https://doi.org/10.1016/j.talanta.2017.08.006

113. Zheng, L., Liu, L., Yu, J., & Shao, P. (2022). Novel trends and applications of natural pH-responsive indicator film in food packaging for improved quality monitoring. Food Control, 134, 108769. https://doi.org/10.1016/j.foodcont.2021.108769

114. Zhou, W., Wu, Z., Xie, F., Tang, S., Fang, J., & Wang, X. (2021). 3D printed nanocellulose-based label for fruit freshness keeping and visual monitoring. Carbohydrate Polymers, 273, 118545. https://doi.org/10.1016/j.carbpol.2021.118545

115. Zhu, X., Li, Q., Li, J., Luo, J., Chen, W., & Li, X. (2018). Comparative study of volatile compounds in the fruit of two banana cultivars at different ripening stages. Molecules, 23(10), 2456. https://doi.org/10.3390/molecules23102456


Рецензия

Для цитирования:


Бурак Л.Ч., Сапач А.Н., Писарик М.И. Интеллектуальная упаковка для овощей и фруктов, классификация и перспективы использования: Обзор предметного поля. Health, Food & Biotechnology. 2023;5(1). https://doi.org/10.36107/hfb.2023.i1.s165

For citation:


Burak L.Ch., Sapach A.N., Pisarik M.I. Intelligent Packaging For Vegetables And Fruits, Classification And Use Prospects: Scoping Review. Health, Food & Biotechnology. 2023;5(1). (In Russ.) https://doi.org/10.36107/hfb.2023.i1.s165

Просмотров: 524


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)