Preview

Health, Food & Biotechnology

Advanced search

Development of Technologies for Producing Phytomelanines on Waste Oil Production

https://doi.org/10.36107/hfb.2019.i2.s245

Abstract

Phytomelanin is a unique [M1] component of plant origin, obtained from the husks of sunflower, having photo and radioprotective effects, effectively protecting the skin from the damaging effects of UV rays of different wavelengths. Melanin is found in all living organisms, including plants. Revealed that preparations with melanin prevent ulceration, reduce the number of hemorrhages in the stomach mucosa and prevent a decrease total body weight in stress condition. The presence of melanin in food products and products contributes to their long-term storage. Water extracts stabilized with phytomelanin gives a possibility to obtain healing cosmetics that are fundamentally new in their properties. The search for ways to obtain phytomelanins from plant waste is an actual task facing the scientific community. A collective of researchers has proposed a method for producing water-soluble phytomelanins from sunflower husk, which is an oilseed waste. The main stage of obtaining is alkaline extraction, continuing at a temperature of 120 ° C for 1 h. It is offered to use a solution of caustic soda with various concentration as an extractant. The resulting extract acidified with a solution of hydrochloric acid to a pH of 1.0 to 2.0, separated, neutralized and dried. For the obtained substance confirmed the character of melanoid using qualitative reactions, and the adsorption ability with relation to methylene blue was determined. The best exemplars had activity from 50 to 79 mg / g dry matter. Via a model test system from chicken yolk, the total antioxidant activity was determined, which ranged from 10% to 28%. The resulting substance can be used as a therapeutic drug or biologically active food supplement.

About the Authors

L. A. Ivanova
Moscow State University of Food Production
Russian Federation

Lyudmila A. Ivanova

11 Volokolamskoe highway, Moscow, 125080



I. A. Fomenko
Moscow State University of Food Production
Russian Federation

Ivan A. Fomenko

11 Volokolamskoe highway, Moscow, 125080



D. A. Sergeeva
Moscow State University of Food Production
Russian Federation

Darya A. Sergeeva

11 Volokolamskoe highway, Moscow, 125080



L. A. Churmasova
Moscow State University of Food Production
Russian Federation

Lyudmila A. Churmasova

11 Volokolamskoe highway, Moscow, 125080



Zh. Kabarzhan
Kazakh National Agrain University
Kazakhstan

Zhenisbai Kabarzhan

8 Abay ave., Almaty, 050010



References

1. Ivanova, G. A., Doktorov, L. Yu., Sysoeva, M. A., & Kutyrev, G. A. (2008). Using a nitrogen-containing hyperbranched polymer to increase the antioxidant activity of chaga melanins. Himiya rastitel’nogo syr’yа [Chemistry of plant raw materials], 2, 75-80.

2. Kuznetsova, O. Yu., Shaekhov, M. F., & Ziyatdinova, G. K. (2019). Extracts and melanins of chaga obtained after plasma processing of raw materials. Uchenye zapiski kazanskogo universiteta [Scientific notes of Kazan University], 161(2), 211-221. https://doi.org/10.26907/2542-064X.2019.2.211-221

3. Ostrovsky, M. A., & Dontsov, A. E. (1985). Physiological functions of melanin in the body. Fiziologiya cheloveka [Human physiology], 11(4), 670-678.

4. Sevryukova, G. A., & Kirichenko, M. A. (2016). Production of melanin based on waste oil extraction production. Promyshlennaya ekologiya i bezopasnost’ zhiznedeyatel’nosti» Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta [Industrial Ecology and Life Safety ”Volgograd State Technical University], 1, 125.

5. Yusifov, E. Yu. (1987). Influence of melanin on the free radical state of gamma-irradiated proteins and lipids. Radiobiology [Radiobiology], 27(1), 8-11.

6. Adams, R., Van Bogaert, L., & Ecken, H. (1994). Striatonigral degeneration. Journal of Neuropathology and Experimental Neurology, 23, 584–593.

7. Balandaykin, M. E., & Zmitrovich, I. V. (2015). Review on chaga medicinal mushroom, Inonotus obliquus (higher basidiomycetes): Realm of medicinal applications and approaches on estimating its resource potential. International Journal of Medicinal Mushrooms, 17(2), 95–104. https://doi.org/10.1615/intjmedmushrooms.v17.i2.10

8. Chung, M. J. (2010) Anticancer activity of subfractions containing pure compounds of Chaga mushroom (Inonotus obliquus) extract in human cancer cells and in Balbc/c mice bearing Sarcoma-180 cells. Nutrition research and practice, 4(3), 177–182. https://doi.org/10.4162/nrp.2010.4.3.177

9. De-Paula, O. C., Marzinek, J., & Oliveira, D. M. T. (2013). The role of fibres and the hypodermis in Compositae melanin secretion. Micron, 44, 312-316.

10. El-Obeid, A., Al-Harbi, S,. AL-Jomah, N., & Hassib, A. (2006). Herbal melanin modulates tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF) production. Phytomedicine: international journal of phytotherapy and phytopharmacology, 13(5), 324– 333.

11. El-Obeid, A., Hassib, A., Pontén, F., & Westermark, B. (2006). Effect of herbal melanin on IL-8: a possible role of Toll-like receptor 4 (TLR4). Biochemical and Biophysical research communications, 344(4), 1200–1206.

12. Grossi, G.F., Durante, M., & Gvalanella, G. (1998). Effects of melanin on high-LET radiation response of human epithelial cells. Radiation and environmental biophysics, 37, 63–67.

13. Hung, Y. C., Sava, V. M., Makan, S. Y., Chen, T. H. J., Hong, M. Y, & Huang, G. S. (2002). Antioxidant activity of melanins derived from tea: comparison between different oxidative states. Food Chemistry, 78, 233-240.

14. Jana, B., & Mukherjee, S. (2004). Notes on the distribution of phytomelanin layer in higher plants—a short communication. Journal of Pharmaceutical Biology, 4(3), 131–132.

15. Kahlos, K., Kangas, L., & Hiltunen, R. (1986). Antitumor activity of triterpenes in Inonotus obliquus. Planta Medica, 52, 554.

16. Keles, Y., & Özdemir, Ö. (2018). Extraction, purification, antioxidant properties and stability conditions of phytomelanin pigment on the sunflower seeds. International Journal of Secondary Metabolite, 5(2), 140-148. https://doi.org/10.21448/ijsm.377470

17. Kunwar, A., Adhikary, B., Jayakumar, S., Barik, A., Chattopadhyay, S., Raghukumar, S., & Priyadarsini K. (2012). Melanin, a promising radioprotector: Mechanisms of actions in a mice model. Toxicology and Applied Pharmacology 264(2), 202–211. https://doi.org/10.1016/j.taap.2012.08.002

18. Nakata, T., Yamada, T., Taji, S., Ohishi, H., Wada, S., Tokuda, H., Sakuma, K., & Tanaka, R. (2007). Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorganic & Medicinal Chemistry, 15(1), 257–264.

19. Oberg, F., Haseeb, A., Ahnfelt, M., Pontеn, F., Westermark, B., & El-Obeid, A. (2009). Herbal melanin activates TLR 4/NF-kappa B signaling pathway. Phytomedicine: international journal of phytotherapy and phytopharmacology, 16(5), 477– 484. https://doi.org/10.1016/j.phymed.2008.10.008

20. Park, K.I., Ishikawa, N., Morita, Y. Choi, J.D., Hoshino, A., Iida, S. (2007). A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. The Plant Journal, 49(4), 641-654.

21. Pugh, N., Balachandran, P., Lata, H., Dayan, F., Joshi, V., Bedir, E., Makino, T., Moraes, R., Khan, I., & Pasco, D. (2005). Melanin: dietary mucosal immune modulator from Echinacea and other botanical supplements. International Immunopharmacology. 5(4), 637–647.

22. Schweitzer, A., Revskay,a E., Chu, P., Pazo, V., Friedman, M., Nosanchuk, J., Cahill, S., Frases, S., Casadevall, A., & Dadachova, E. (2010). Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer. International Journal of Radiation Oncology Biology Physics 78(5), 1494–1502. https://doi.org/10.1016/j.ijrobp.2010.02.020

23. Shin, Y., Tamai Y., & Terazawa M. (2000). Chemical constituents of Inonotus obliquus III. International Journal of Medicinal Mushrooms, 2(3), 201–207.

24. Shin, Y., Tamai, Y., & Terazawa, M. (2001). Triterpenoids, steroids and a new sesquiterpen from Inonotus obliquus (Pers.: Fr.) Bond, et Sing. International Journal of Medicinal Mushrooms, 4(3), 250-256.

25. Shujing, S., Zhang, X., Sun, S., Zhang, L., Shan, S., & Zhu, H. (2015). Production of natural melanin by Auricularia auricula and study on its molecular structure, Food Chemistry, 190, 801-807.

26. Zheng, W., Miao, K., Liu, Y., Zhao, Y., Zhang, M., Pan, S., & Dai, Y. (2010). Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and and submerged culture strategies for up-regulating their production. Applied Microbiology and Biotechnology, 87(4), 1237–1254. https://doi.org/10.1007/s00253-010-2682-4


Review

For citations:


Ivanova L.A., Fomenko I.A., Sergeeva D.A., Churmasova L.A., Kabarzhan Zh. Development of Technologies for Producing Phytomelanines on Waste Oil Production. Health, Food & Biotechnology. 2019;1(2):136-146. (In Russ.) https://doi.org/10.36107/hfb.2019.i2.s245

Views: 495


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)