Preview

Health, Food & Biotechnology

Advanced search

Current State and Use of Biodegradable Materials

https://doi.org/10.36107/hfb.2023.i3.s232

Abstract

Introduction. One of the important factors in the need to develop biodegradable packaging is the presence of its non-decomposable variations in waste up to 50%. In this regard, the modification of biodegradable polymers to impart high performance properties while maintaining the ability to biodegrade is an urgent task.

Purpose. To consider the current state and the use of biodegradable materials in Russia and abroad.

Materials and Methods. The selection of studies was carried out in two stages: a  decision was made to include a publication in the review based on its title and abstract, and full-text articles were studied for a detailed assessment of compliance with the inclusion criteria. An assessment of the research quality was conducted. During data synthesis, the results of individual studies were compared, combined, and summarized. The review included articles published from 1999 to 2024. The articles were selected based on the number of citations for the following keywords: biodegradable packaging, medicine, pharmaceuticals, environment, food technology, biomass and chemical synthesis. 

Results. As a result of this interactive search, 56 studies were identified. After analyzing the research, it was found that the variety of biodegradable polymers allows them to unlock their potential for use in various fields. A wide range of such polymers provides an opportunity to create new materials that can efficiently decompose in nature and have the performance properties we need. Also, most studies have not found adverse effects for various organisms, and only a limited statement can be made about the environmental compatibility of biodegradable polymers. The use of various modifications has led to the expansion of the utilization of edible and biodegradable films, which is associated with an improvement in the general characteristics of biopolymers, increasing their mechanical, thermal and barrier properties, usually even at very low content. Thus, modifiers play an important role in increasing the efficiency of biopolymers application, which reduce the amount of packaging waste associated with processed foods and contribute to the preservation of products by extending their shelf life.

Conclusions. This article discusses biodegradable polymers and compositions based on them, the current state and use of biodegradable materials in various fields. Modern studies on the assessment of the possible impact of biodegradable polymers on the environment are presented. Promising trends in the use of biodegradable polymers in the food industry, as well as in medicine and pharmaceuticals are shown.

About the Authors

Nikita S. Bazhenov
Russian Biotechnological University (BIOTECH University)
Russian Federation


Marina I. Gubanova
Russian Biotechnological University (BIOTECH University)
Russian Federation


Irina A. Kirsh
Russian Biotechnological University (BIOTECH University)
Russian Federation


Olga A. Bannikova
Russian Biotechnological University (BIOTECH University)
Russian Federation


Viktor A. Dymitsky
Russian Biotechnological University (BIOTECH University)
Russian Federation


References

1. Abdullah, Z. W., Dong, Y., Davies, I. J., & Barbhuiya, S. (2017). PVA, PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application. Polymer-Plastics Technology and Engineering, 56(12), 1307–1344. https://doi.org/10.1080/03602559.2016.1275684.

2. Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K. S., & Kubo, M. (2016). Degradation of Bioplastics in Soil and Their Degradation Effects on Environmental Microorganisms. Journal of Agricultural Chemistry and Environment, 05(01), 23–34. https://doi.org/10.4236/jacen.2016.51003

3. Aslam, M., Kalyar, M. A., & Raza, Z. A. (2018). Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering & Science. doi:10.1002/pen.24855.

4. Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00007.

5. Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00007.

6. Ben Halima, N. (2016). Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Advances, 6(46), 39823–39832. https://doi.org/10.1039/c6ra05742j.

7. Brandl, H. and Puchner, P. (1992). Biodegradation of plastic bottles made from ‘Biopol’ in an aquatic ecosystem under in situ conditions. Biodegradation. 2: 237–243.

8. Chandra, R. (1998). Biodegradable polymers. Progress in Polymer Science, 23(7), 1273–1335. https://doi.org/10.1016/s0079-6700(97)00039-7.

9. Corradini, E., Curti, P., Meniqueti, A., Martins, A., Rubira, A., & Muniz, E. (2014). Recent Advances in Food-Packing, Pharmaceutical and Biomedical Applications of Zein and Zein-Based Materials. International Journal of Molecular Sciences, 15(12), 22438–22470. doi:10.3390/ijms151222438.

10. Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107, 367–392. doi:10.1016/j.addr.2016.06.012.

11. Fredriksson, H., Silverio, J., Andersson, R., Eliasson, A.-C., & Åman, P. (1998). The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydrate Polymers, 35(3–4), 119–134. https://doi.org/10.1016/s0144-8617(97)00247-6.

12. Gaaz, T., Sulong, A., Akhtar, M., Kadhum, A., Mohamad, A., & Al-Amiery, A. (2015). Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules, 20(12), 22833–22847. https://doi.org/10.3390/molecules201219884.

13. Gross, R.A. and Kalra, B. (2002) Biodegradable polymers for the environment. Green Chem. 297: 803–807.

14. Guan, J., Fujimoto, K. L., Sacks, M. S., & Wagner, W. R. (2005). Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials, 26(18), 3961–3971. https://doi.org/10.1016/j.biomaterials.2004.10.018

15. Haider, T. P., Völker, C., Kramm, J., Landfester, K., & Wurm, F. R. (2018). Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie International Edition, 58(1), 50–62. Portico. https://doi.org/10.1002/anie.201805766.

16. Jacobsen, S. and Fritz, H. G. (1999). Plasticizing polylactide: The effect of different plasticizers on the mechanical properties. Polymer Engineering and Science. 39(7): 1303–1310.

17. Kampeerapappun, P., Aht-ong Duangdao, Pentrakoon, D., & Srikulkit, K. (2007). Preparation of cassava starch/montmorillonite composite film. Carbohydrate Polymers, 67(2), 155–163. doi:10.1016/j.carbpol.2006.05.012.

18. Ke, T.Y. and Sun, X.Z. (2000). Physical properties of poly(lactic acid) and starch composites with various blending ratios. Cereal Chem. 77(6): 761–768.

19. Kenawy, E.-R., Worley, S. D., & Broughton, R. (2007). The Chemistry and Applications of Antimicrobial Polymers:  A State-of-the-Art Review. Biomacromolecules, 8(5), 1359–1384. doi:10.1021/bm061150q.

20. Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. Nature, 428(6982), 487–492. https://doi.org/10.1038/nature02388

21. Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., & Nava-Saucedo, J.-E. (2008). Polymer biodegradation: Mechanisms and estimation techniques – A review. Chemosphere, 73(4), 429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064

22. Lyu, S., & Untereker, D. (2009). Degradability of Polymers for Implantable Biomedical Devices. International Journal of Molecular Sciences, 10(9), 4033–4065. https://doi.org/10.3390/ijms10094033

23. Mohanty, A.K., Misra, M., and Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 276/277: 1–24.

24. Naushad Emmambux, M., & Stading, M. (2007). In situ tensile deformation of zein films with plasticizers and filler materials. Food Hydrocolloids, 21(8), 1245–1255. https://doi.org/10.1016/j.foodhyd.2006.09.013

25. Otoni, C. G., Espitia, P. J. P., Avena-Bustillos, R. J., & McHugh, T. H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60–73. https://doi.org/10.1016/j.foodres.2016.02.018

26. Peelman, N., Ragaert, P., De Meulenaer, B., Adons, D., Peeters, R., Cardon, L., Van Impe, F., & Devlieghere, F. (2013). Application of bioplastics for food packaging. Trends in Food Science & Technology, 32(2), 128–141. https://doi.org/10.1016/j.tifs.2013.06.003

27. Peterson, K., Nielsen, P.V., Bertelsen, G., Lawther, M., Olsen, M.B., Nilsson, N.H., and Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends Food Sci. Technol. 10: 52–68.

28. Pillai, C. K. S., & Sharma, C. P. (2010). Review Paper: Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance. Journal of Biomaterials Applications, 25(4), 291–366. https://doi.org/10.1177/0885328210384890

29. Rajwade, J. M., Paknikar, K. M., and Kumbhar, J. V. (2015). Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol. 99, 2491–2511. doi: 10.1007/s00253-015-6426-3.

30. Ratnayake, W. S., Hoover, R., Shahidi, F., Perera, C., & Jane, J. (2001). Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chemistry, 74(2), 189–202. https://doi.org/10.1016/s0308-8146(01)00124-8.

31. Reiniati, I., Hrymak, A. N., and Margaritis, A. (2017). Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Crit. Rev.Biotechnol. 37, 510–524. doi: 10.1080/07388551.2016.1189871.

32. Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629–1652. doi:10.1016/j.progpolymsci.2013.05.008.

33. Rivelilson, M. de F. (2014). Technological development and evaluation on sialagogue activity of a spray-like liquid formulation of pilocarpine. African Journal of Pharmacy and Pharmacology, 8(35), 868–674. https://doi.org/10.5897/ajpp2014.4027.

34. Ruka, D. R., Simon, G. P., and Dean, K. M. (2012). Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr. Polym. 89, 613–622. doi: 10.1016/j.carbpol.2012.03.059.

35. Saini, I., Sharma, A., Dhiman, R., Aggarwal, S., Ram, S., & Sharma, P. K. (2017). Grafted SiC nanocrystals: For enhanced optical, electrical and mechanical properties of polyvinyl alcohol. Journal of Alloys and Compounds, 714, 172–180. https://doi.org/10.1016/j.jallcom.2017.04.183.

36. Shukla, R., & Cheryan, M. (2001). Zein: the industrial protein from corn. Industrial Crops and Products, 13(3), 171–192. https://doi.org/10.1016/s0926-6690(00)00064-9.

37. Siva, P., Tareq, M. A., & Shameli, K. (2022). Biodegradable Polymers for Packaging: A Bibliometric Overview of the Publication in Web of Science in Year 2012-2021. Journal of Research in Nanoscience and Nanotechnology, 5(1), 29-42. https://doi.org/ 10.2376/0003-925X-68-26.

38. Souza, P. M. S., Morales, A. R., Marin-Morales, M. A., & Mei, L. H. I. (2013). PLA and Montmorilonite Nanocomposites: Properties, Biodegradation and Potential Toxicity. Journal of Polymers and the Environment, 21(3), 738–759. https://doi.org/10.1007/s10924-013-0577-z

39. Tang, X. Z., Kumar, P., Alavi, S., & Sandeep, K. P. (2012). Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Critical reviews in food science and nutrition, 52(5), 426-442. doi: 10.1080/10408398.2010.500508.

40. Tokić, I., Fruk, G., & Jermić, T. (2011). Biorazgradiva ambalaža za čuvanje voća i drugih hortikulturnih proizvoda: materijali, svojstva i učinak na kakvoću. Journal of Central European Agriculture, 12(1), 226-238.

41. Tripathi, S., Mehrotra, G. K., & Dutta, P. K. (2009). Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. International Journal of Biological Macromolecules, 45(4), 372–376. doi:10.1016/j.ijbiomac.2009.07.006.

42. Urry, D. W. (1995). Elastic biomolecular machines. Scientific American, 272(1), 64-69.

43. Van Hest, J. C. M., & Tirrell, D. A. (2001). Protein-based materials, toward a new level of structural control. Chemical Communications, 19, 1897–1904. https://doi.org/10.1039/b105185g

44. Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263. doi:10.1016/j.eurpolymj.2010.12.011.

45. Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods – a review. Carbohydrate Polymers, 219, 63–76. https://doi.org/10.1016/J.CARBPOL.2019.05.008.

46. Xu, Y., Liu, X., Jiang, Q., Yu, D., Xu, Y., Wang, B., & Xia, W. (2021). Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials. Carbohydrate Polymers, 260, 117778. doi:10.1016/j.carbpol.2021.117778.

47. МИНИСТРОВ Ш. К. Окружающая среда для Европы //Астана, Казахстан. – 2011. – С. 21-23.


Supplementary files

Review

For citations:


Bazhenov N.S., Gubanova M.I., Kirsh I.A., Bannikova O.A., Dymitsky V.A. Current State and Use of Biodegradable Materials. Health, Food & Biotechnology. 2024;6(3). (In Russ.) https://doi.org/10.36107/hfb.2023.i3.s232

Views: 129


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)