Preview

Health, Food & Biotechnology

Advanced search

Modification of Polymer Mixtures with Copolymers to Obtain Polymer Compositions with Improved Deformation and Strength Characteristics

https://doi.org/10.36107/hfb.2019.i3.s251

Abstract

Recycling of multi-layer polymer materials is difficult, due to the complexity of sorting and separation of mixed waste, so most often they end up in landfills, polygons or incinerated, which leads to environmental and economic problems in the country. Currently, there are ways to process packaging waste with the exception of the sorting stage using chemical and physical modification. The article is devoted to the process of modification of polyolefin mixtures based on polyethylene and polypropylene, as well as a comprehensive study of the obtained secondary raw materials, which is aimed at increasing the technological compatibility of polymer materials for the development of recycling technology with the prospect of returning polymer compositions to the production cycle. The following tasks were set: to conduct a comprehensive study of polymer compositions based on polyolefins, which are modified by a copolymer of ethylene with propylene in a different ratio of components; to study the influence of the modifier on the physical and mechanical properties of polymer mixtures; to study the influence of rheological properties of polymer compositions modified by a copolymer; to propose a technology for recycling secondary polyolefin compositions in the production cycle. The objects of research were polyethylene, polypropylene and ethylene copolymer with propylene as a binder, in different proportions of components. Samples were obtained on a laboratory single-screw extruder with multiple processing. Scientific research was carried out using the method of capillary viscometry, pycnometric method for determining rheological properties, and uniaxial stretching method for studying the physical and mechanical properties of polymer compositions. It was found that the introduction of a modifier (ethylene copolymer with propylene) leads to an increase in the elongation at break in polymer compositions in the ratio of 70 % polyethylene to 30 % polypropylene and the breaking stress for compositions based on polyethylene and polypropylene in the ratio of 50:50 and 30: 70, respectively. As a result of the research, a technology for obtaining multi-layer packaging materials using packaging waste in the middle layer for contact with food products is proposed; a technology for processing polyolefin mixtures of various chemical nature is proposed without pre-sorting, to obtain packaging for technical purposes and household items.

About the Authors

I. S. Tveritnikova
Moscow State University of Food Production
Russian Federation

Izabella S. Tveritnikova

11 Volokolamskoe highway, Moscow, 125080 



O. A. Bannikova
Moscow State University of Food Production
Russian Federation

Olga A. Bannikova

11 Volokolamskoe highway, Moscow, 125080



O. V. Beznaeva
Moscow State University of Food Production
Russian Federation

Olga V. Beznaeva

11 Volokolamskoe highway, Moscow, 125080



V. A. Romanova
Moscow State University of Food Production
Russian Federation

Valentina A. Romanova

11 Volokolamskoe highway, Moscow, 125080



D. M. Zagrebina
Moscow State University of Food Production
Russian Federation

Darya M. Zagrebina

11 Volokolamskoe highway, Moscow, 125080



T. A. Kondratova
Moscow State University of Food Production
Russian Federation

Tamara A. Kondratova

11 Volokolamskoe highway, Moscow, 125080



References

1. Akutin, M. S., & Artemenko, B. N. (1967). Sintez, modifikaciya i pererabotka poliolefinov [Synthesis, modification and processing of polyolefins]. Izdatel’stvo Azerbajdzhanskogo Universiteta.

2. Ananyev, V. V., Gubanova, M. I., Kirsh, I. A., & Semenov, G. V. (2008). Modification of polyethylene initiated by ultrasound. Plasticheskiye massy [Plastic Masses], 6, 7-8.

3. Ananyev, V. V., Gubanova, M. I., Kirsh, I. A., Semenov, G. V., & Khmelevsky, G. K. (2006). Utilizaciya i vtorichnaya pererabotka polimernyh materialov [Recycling and recycling of polymer materials]. MSUPB.

4. Bespalov, Yu. A., & Konovalenko, N. G. (1981). Mnogokomponentnye sistemy na osnove polimerov [Multicomponent systems based on polymers]. Himiya.

5. Bogdanova, A. S. (2014). Polymers for packaging (Part I). Novyye khimicheskiye tekhnologii [New chemical technologies], 6, 4-7.

6. Dikun, A. V., Shanchuk, A. N., Alkhovik, M. V., & Kasperovich, O. M. (2017). Razrabotka polimernogo kompozicionnogo materiala na osnove nesmeshivaemyh PU [Development of a polymer composite material based on immiscible PUs], 2. BGTU.

7. Zelke, S. E. M., Cutler, D., & Hernandez, R. (2011). Plastikovaya upakovka: proizvodstvo, primenenie, svojstva [Plastic packaging: production, application, properties].Professiya.

8. Casale, A., & Porte, R. (1983). Reakcii polimerov pod dejstviem napryazhenij [Polymer stress reactions]. Himiya.

9. Kerber, M. L., Golovkin, G. S., & Gorbatkina, Yu. А. (2014). Polimernye kompozicionnye materialy. Struktura. Svojstva. Tekhnologii [Polymer composite materials. Structure. Properties. Technologies]. Professiya.

10. Kirsh, I. A. (2016). Ustanovlenie zakonomernostej vliyaniya ul’trazvukovogo polya na fiziko-himicheskie svojstva i strukturu rasplavov polimerov pri ih vtorichnoj pererabotke [Establishing the regularities of the influence of the ultrasonic field on the physical and chemical properties and structure of polymer melts during their recycling] [Doctoral dissertation, University of Ivanovo]. Ivanovo, Russia.

11. Kirsh, I. A., Chalykh, T. I., Ananyev, V. V., & Zaikov, G. E. (2015). Investigation of the influence of ultrasound on the rheological properties of polymers of various chemical nature to create a new method for recycling polymer compositions. Vestnik kazanskogo tekhnologicheskogo universiteta [Bulletin of Kazan Technological University], 18, 182-186.

12. Kirsh, I. A., Chalykh, T. I., Ananyev, V. V., Sogrina, D. A., & Pomogova, D. A. (2014). Study of the influence of ultrasonic processing on the rheological properties of polymers during their repeated processing. Plasticheskiye massy [Plastic Masses], 11-12, 45-48.

13. Kirsh, I. A., Chalykh, T. I., Chalykh, A. E., Aliev, A. D., & Matveev, V. V. (2016). Structural and morphological changes in compositions based on polyethylene and polyamide under the influence of ultrasound on melts of polymer mixtures. Plasticheskiye massy [Plastic Masses], 1-2, 45-49.

14. LaMantia, F. (2006). Vtorichnaya pererabotka plastmass [The recycling of plastics]. Professiya.

15. Lyubushkin, E. G. (2012). Recycling of polymer packaging in Russia and abroad. Polimernyye materialy [Polymer materials], 3, 4-17.

16. Meshchankin, M. Yu., Kuznetsova, Ya. A., Scherbina, M. A., & Chvalun, S. N. (2016). Biodegradable mixtures obtained by the reaction mixture of polylactide and polyamide-6. Vysokomolekulyarnyye soyedineniya [High molecular weight compounds], 58, 167-179.

17. Mzhachikh, E. I., Ivanova V. N., Sukhareva L. A., Yakovlev, V. V., & Yakovlev V. S. (2009). Modifikaciya polimerov v proizvodstve taroupakovochnyh materialov [Modification of polymers in the production of packaging materials]. DeLiprint.

18. Manson, J., & Sperling, L. (1979). Polimernye smesi i kompozity [Polymer mixtures and composites]. Himiya.

19. Nazarov, V. G. (2008). Poverhnostnaya modifikaciya polimerov [Surface modification of polymers]. MGUP.

20. Noshei, A., & McGrath, J. (1980). Blok-sopolimery [Block copolymers].Mir.

21. Pishchulin, I. (2013). Recycling of complex films. Plastiks [Plastics], 7, 38-44.

22. Paul, D. R., & Bucknell, K. B. (2009). Polimernye smesi [Polymer blend], 1. Nauchnye osnovy i tekhnologii.

23. Ovchinikova, G. P., & Artemenko, S. E. (2000). Recikling vtorichnyh polimerov [Recycling of secondary polymers]. Saratovskij gosudarstvennyj tekhnicheskij universitet.

24. Rudolph, N., Kiesel, R., & Aumnate, S. (2018). Recikling plastmass. Ekonomika, ekologiya i tekhnologii pererabotki plastmassovyh othodov [Recycling of plastics. Economics, ecology and technologies of plastic waste processing]. Professiya.

25. Simonescu, K., & Oprea, K. (1970). Mekhanohimiya vysokomolekulyarnyh soedinenij [Mechanochemistry of macromolecular compounds]. Mir

26. Sirota, A. G. (1974). Modifikaciya struktury i svojstv poliolefinov [Modification of the structure and properties of polyolefins]. Himiya.

27. Suvorova, A. I., & Tyutkova, I. S. (2008). Vtorichnaya pererabotka polimerov i sozdanie ekologicheski chistyh polimernyh materialov [Recycling of polymers and creating environmentally friendly polymer materials]. Ural’skij gosudarstvennyj universitet im. A. M. Gor’kogo.

28. Shayers, J. (2012). Recikling plastmass: nauka, tekhnologii, praktika [Recycling of plastics: science, technology, practice]. NOT.

29. Adeniyi, A, Agboola, O, Sadiku, E.R., Durowoju, M.O., Olubambi, P.A., Babul Reddy, A., Ibrahim, I. D., Kupolati, W.K. (2016). Thermoplastic-Thermoset Nanostructured Polymer Blends. In Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems. Micro and Nano Technologies (pp. 15-38). https://doi.org/10.1016/B978-0-323-39408-6.00002-9

30. Biron, M. (2017). Recycling: The First Source of Renewable Plastics. In Industrial Applications of Renewable Plastics. Environmental, Technological, and Economic Advances (pp. 67-114). https://doi.org/10.1016/B978-0-323-48065-9.00003-0

31. Brow, H. R. (1989). Effect of a diblock copolymer on the adhesion between incompatible polymers. Macromolecules, 22, 2859-2860

32. Creton, C., Kramer, E.J ., & Hadziioannou, G. (1991). Critical molecular weight for block copolymer reinforcement of interfaces in a two-phase polymer blend. Macromolecules, 24, 1846-1853

33. Fayt, R., Jerome, R., & Teyssie, Ph. (1987). Characterization and control of interfaces in emulsified incompatible polymer blends. Polymer engineering and science, 27, 328-334

34. Fayt, R., Jerome, R., & Teyssie, Ph. (1981). Molecular design of multicomponent polymer systems. II. Emulsifying effect of a poly(hydrogenated butadiene-b-styrene) copolymer in high-density polyethylene/polystyrene blends. Journal of Polymer Science Part B: Polymer Physic, 19, 1269-1272

35. Kakhramanov, N. T., Gasimova, G. Sh., Pesetskiy, S. S., Kakhramanly, J. N., Gurbanova, R. V., Hajiyeva R. Sh., & Suleymanova E. I. (2019). Physical and mechanical properties of nanocomposites based on block copolymer propylene with ethylene and graphite. Kimya problemleri, 17, 72-80

36. Maris, J., Bourdon, S., Brossard, J-M., Cauret, L., Fontaine, L., & Montembault, V. (2018). Mechanical recycling: Compatibilization of mixed thermoplastic wastes. Polymer Degradation and Stability, 147, 245-266 https://doi.org/10.1016/j.polymdegradstab.2017.11.001

37. Muthuraj, R., Misra, M., & Mohanty, A. K. (2015). Studies on mechanical, thermal, and morphological characteristics of biocomposites from biodegradable polymer blends and natural fibers. In Biocomposites. Design and Mechanical Performance (pp. 93-140). https://doi.org/10.1016/B978-1-78242-373-7.00014-7

38. Xu, Y., Loi, J., Delgado, P., Topolkaraev, V., McEneany, R. J., Macosko, C. W., & Hillmyer, M. A. (2015). Reactive Compatibilization of Polylactide/ Polypropylene Blends. Industrial & Engineering Chemistry Research, 54, 6108-6114

39. Wang, H., Dong, W., & Li., Y. (2015). Compatibilization of Immiscible Polymer Blends Using in Situ Formed Janus Nanomicelles by Reactive Blending. ACS Macro Letters, 12, 1398-1403. https://doi.org/10.1021/acsmacrolett.5b00763


Review

For citations:


Tveritnikova I.S., Bannikova O.A., Beznaeva O.V., Romanova V.A., Zagrebina D.M., Kondratova T.A. Modification of Polymer Mixtures with Copolymers to Obtain Polymer Compositions with Improved Deformation and Strength Characteristics. Health, Food & Biotechnology. 2019;1(3):92-105. (In Russ.) https://doi.org/10.36107/hfb.2019.i3.s251

Views: 366


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)