The Influence of Gut Microbiota on the Development of Schizophrenia. Ways of Pharmacologic Correction (Systematic Scoping Review)
https://doi.org/10.36107/hfb.2025.i2.s254
Abstract
Introduction. The development of schizophrenia is significantly influenced by the composition and quality of the intestinal microflora. Generalization of knowledge about the nature of the disease allows to define new effective methods of treatment of mental disorders by correcting the patient's microbiota.
Purpose. The purpose of the article is to analyze, systematize and summarize the scientific data obtained in studies of the relationship of human microbiota with the development of schizophrenia and methods of treatment of the disease.
Materials and Methods. The review includes both Russian and foreign publications published in Russian and English from 2019 to 2025. The databases eLibrary, Cyberleninka, Scopus and Web of Science were used to search for foreign scientific papers. 91 articles were analyzed in the study.
Results. The microbiota, being in a symbiotic relationship with the organism, maintains its homeostasis. Studies have shown that the composition and quality of gut microflora in healthy individuals differ significantly from patients suffering from schizophrenia. This emphasizes the need to maintain normal levels of alpha diversity in the microbiota. The influence of microflora on the development of schizophrenia is explained by the existence of a microbiota-gut-brain axis. A number of bacteria produce neutrotransmitters related to the glutamatergic system of the brain, which play a significant role in the pathogenesis of schizophrenic disorders. Some studies suggest that altered microbiota composition may activate glutamatergic hypofunction. The drugs of first choice in the treatment of schizophrenia are antipsychotic drugs (AD), or neuroleptics. However, they cause a large number of side effects, including gastrointestinal (GI) disorders observed in 1.5%-60% of cases. This makes it urgent to optimize pharmacotherapy of schizophrenia, taking into account the correction of the patient's microbiota. To promote the therapeutic effect of medications, it is recommended to prescribe combinations of pro- and prebiotics, which allow to enrich the intestinal microflora.
Conclusions. Schizophrenia requires a comprehensive approach to therapy. Studies show a link between the composition of the intestinal microflora and the development of the disease. This opens up new strategies for the diagnosis and pharmacotherapy of schizophrenia. Given its association with the microbiota-gut-brain axis, it is important to investigate pro- and prebiotic supplements. They may reduce the side effects of neuroleptics and normalize the composition of the intestinal microflora.
About the Authors
Lilia Kh. AbdullinaRussian Federation
Anna A. Mosina
Russian Federation
Yulia A. Sorokina
Russian Federation
Elena P. Strueva
Russian Federation
References
1. Бибекова, Ж. Б., Стрельцов, Е. А., & Макарчук, А. С. (2020). Применение антипсихотиков длительного действия при шизофрении. В Медицинский вестник Юга России (с. 6-13).
2. Булгакова, С. В., Романчук, Н. П., & Тренева, Е. В. (2022). Микробиом и мозг: кишечная микробиота и нейроэндокринная система. В Бюллетень науки и практики (с. 261-307).
3. Бурбаева, Г. Ш., Прохорова, Т. А., Савушкина, О. К., Терешкина, Е. В., Воробьева, Е. А., & Бокша, И. С. (2023). Окислительный стресс при шизофрении: связь с нейрохимическими патогенетическими гипотезами. В Психиатрия (с. 85-99). https://doi.org/10.30629/2618-6667-2023-21-6-85-99
4. Малыгина, О. Г., Усынина, А. А., & Макарова, А. А. (2024). Связь между кишечной микробиотой младенцев и их нервно-психическим развитием: систематическое обзорное исследование литературы по методологии scoping review. В Вопросы современной педиатрии (с. 3-20). https://doi.org/10.15690/vsp.v23i1.2706
5. Незнанов, Н. Г., Леонова, Л. В., Рукавишников, Г. В., Касьянов, Е. Д., & Мазо. (2021). Микробиота кишечника как объект для изучения при психических расстройствах. В Успехи физиологических наук (с. 64-76). https://doi.org/10.31857/s0301179821010069
6. Олескин, А. В. (2019). Взаимодействие симбиотической микробиоты желудочно-кишечного тракта с нервной системой организма-хозяина. В Физическая и реабилитационная медицина, медицинская реабилитация (с. 90-100). https://doi.org/10.36425/2658-6843-19193
7. Рылова, Н. В., Жолинский, А. В., & Самойлов, А. С. (2019). Роль микробиоты кишечника в поддержании гомеостаза организма. В Современные проблемы науки и образования (с. 6-13).
8. Савченко, О. А., Павлинова, Е. Б., Полянская, Н. А., Куклина, Л. В., Замиралов, К. А., Паладий, Е. Е., Кострик, Е. Б., & Чуприк, Ю. В. (2021). Эксайтотоксическое повреждение головного мозга у недоношенных детей: прогностическая ценность биомаркеров глутамат-опосредованного повреждения. В Современные проблемы науки и образования (с. 112). https://doi.org/10.17513/spno.31188
9. Тихонова, Е. В., & Шленская, Н. М. (2021). Обзор предметного поля как метод синтеза научных данных. В Хранение и переработка сельхозсырья, (3), 11–25. https://doi.org/10.36107/spfp.2021.257
10. Alagiakrishnan, K., & Halverson, T. (2021). Microbial Therapeutics in Neurocognitive and Psychiatric Disorders. Journal of clinical medicine research, 13(9), 439–459. https://doi.org/10.14740/jocmr4575
11. Alkhiari R. (2023). Psychiatric and Neurological Manifestations of Celiac Disease in Adults. Cureus, 15(3), e35712. https://doi.org/10.7759/cureus.35712
12. Bistoletti, M., Bosi, A., Banfi, D., Giaroni, C., & Baj, A. (2020). The microbiota-gut-brain axis: Focus on the fundamental communication pathways. Progress in molecular biology and translational science, 176, 43–110. https://doi.org/10.1016/bs.pmbts.2020.08.012
13. Brasso, C., Colli, G., Sgro, R., Bellino, S., Bozzatello, P., Montemagni, C., Villari, V., & Rocca, P. (2023). Efficacy of Serotonin and Dopamine Activity Modulators in the Treatment of Negative Symptoms in Schizophrenia: A Rapid Review. Biomedicines, 11(3), 921. https://doi.org/10.3390/biomedicines11030921
14. Bretler, T., Weisberg, H., Koren, O., & Neuman, H. (2019). The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC medicine, 17(1), 112. https://doi.org/10.1186/s12916-019-1346-1
15. Casertano, M., Fryganas, C., Valentino, V., Troise, A. D., Vitaglione, P., Fogliano, V., & Ercolini, D. (2024). Gut production of GABA by a probiotic formula: an in vitro study. Beneficial microbes, 15(1), 67–81. https://doi.org/10.1163/18762891-20230025
16. Ceraso, A., Lin, J. J., Schneider-Thoma, J., Siafis, S., Tardy, M., Komossa, K., Heres, S., Kissling, W., Davis, J. M., & Leucht, S. (2020). Maintenance treatment with antipsychotic drugs for schizophrenia. The Cochrane database of systematic reviews, 8(8), CD008016. https://doi.org/10.1002/14651858.CD008016.pub3
17. Cheslack-Postava, K., & Brown, A. S. (2022). Prenatal infection and schizophrenia: A decade of further progress. Schizophrenia research, 247, 7-15.
18. Dunot, J., Moreno, S., Gandin, C., Pousinha, P. A., Amici, M., Dupuis, J., Anisimova, M., Winschel, A., Uriot, M., Petshow, S. J., Mensch, M., Bethus, I., Giudici, C., Hampel, H., Wefers, B., Wurst, W., Naumann, R., Ashby, M. C., Laube, B., Zito, K., … Marie, H. (2024). APP fragment controls both ionotropic and non-ionotropic signaling of NMDA receptors. Neuron, 112(16), 2708–2720.e9. https://doi.org/10.1016/j.neuron.2024.05.027
19. Echols, R. M., & Tillotson, G. S. (2019). Difficult to Treat: Do We Need a New Definition?. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 69(9), 1641–1642. https://doi.org/10.1093/cid/ciz184
20. Ermakov, E. A., Melamud, M. M., Buneva, V. N., & Ivanova, S. A. (2022). Immune System Abnormalities in Schizophrenia: An Integrative View and Translational Perspectives. Frontiers in psychiatry, 13, 880568. https://doi.org/10.3389/fpsyt.2022.880568
21. Fabrazzo, M., Cipolla, S., Camerlengo, A., Perris, F., & Catapano, F. (2022). Second-Generation Antipsychotics' Effectiveness and Tolerability: A Review of Real-World Studies in Patients with Schizophrenia and Related Disorders. Journal of clinical medicine, 11(15), 4530. https://doi.org/10.3390/jcm11154530
22. Gasmi, A., Nasreen, A., Menzel, A., Gasmi Benahmed, A., Pivina, L., Noor, S., Peana, M., Chirumbolo, S., & Bjørklund, G. (2023). Neurotransmitters Regulation and Food Intake: The Role of Dietary Sources in Neurotransmission. Molecules, 28(1), 210. https://doi.org/10.3390/molecules28010210
23. Grenda, T., Kwiatek, K., Goldsztejn, M., Sapała, M., Kozieł, N., & Domaradzki, P. (2021). Clostridia in Insect Processed Animal Proteins—Is an Epidemiological Problem Possible? Agriculture, 11(3), 270. https://doi.org/10.3390/agriculture11030270
24. He, Y., Wang, K., Su, N., Yuan, C., Zhang, N., Hu, X., Fu, Y., & Zhao, F. (2024). Microbiota-gut-brain axis in health and neurological disease: Interactions between gut microbiota and the nervous system. Journal of cellular and molecular medicine, 28(18), e70099. https://doi.org/10.1111/jcmm.70099
25. Huang, Y., Wu, J., Zhang, H., Li, Y., Wen, L., Tan, X., Cheng, K., Liu, Y., Pu, J., Liu, L., Wang, H., Li, W., Perry, S. W., Wong, M. L., Licinio, J., Zheng, P., & Xie, P. (2023). The gut microbiome modulates the transformation of microglial subtypes. Molecular psychiatry, 28(4), 1611–1621. https://doi.org/10.1038/s41380-023-02017-y
26. Ibrahim, A. A., Ueland, T., Szabo, A., Hughes, T., Smeland O.B., Andreassen O. A., Osete, J. R., & Djurovic, S. (2023). Longitudinal Transcriptomic Analysis of Human Cortical Spheroids Identifies Axonal Dysregulation in the Prenatal Brain as a Mediator of Genetic Risk for Schizophrenia. Biological Psychiatry, 95(7), 687–698. doi: 10.1016/j.biopsych.2023.08.017
27. Jing, P. B., Chen, X. H., Lu, H. J., Gao, Y. J., & Wu, X. B. (2022). Enhanced function of NR2C/2D-containing NMDA receptor in the nucleus accumbens contributes to peripheral nerve injury-induced neuropathic pain and depression in mice. Molecular Pain, 18 https://doi.org/10.1177/17448069211053255
28. Kantrowitz, J. T., Correll, C. U., Jain, R., & Cutler, A. J. (2023). New Developments in the Treatment of Schizophrenia: An Expert Roundtable. The international journal of neuropsychopharmacology, 26(5), 322–330. https://doi.org/10.1093/ijnp/pyad011
29. King, J. A., Jeong, J., Underwood, F. E., Quan, J., Panaccione, N., Windsor, J. W., Coward, S., deBruyn, J., Ronksley, P. E., Shaheen, A. A., Quan, H., Godley, J., Veldhuyzen van Zanten, S., Lebwohl, B., Ng, S. C., Ludvigsson, J. F., & Kaplan, G. G. (2020). Incidence of Celiac Disease Is Increasing Over Time: A Systematic Review and Meta-analysis. The American journal of gastroenterology, 115(4), 507–525. https://doi.org/10.14309/ajg.0000000000000523
30. Kelly, D. L., Demyanovich, H. K., Rodriguez, K. M., Ciháková, D., Talor, M. V., McMahon, R. P., Richardson, C. M., Vyas, G., Adams, H. A., August, S. M., Fasano, A., Cascella, N. G., Feldman, S. M., Liu, F., Sayer, M. A., Powell, M. M., Wehring, H. J., Buchanan, R. W., Gold, J. M., Carpenter, W. T., … Eaton, W. W. (2019). Randomized controlled trial of a gluten-free diet in patients with schizophrenia positive for antigliadin antibodies (AGA IgG): a pilot feasibility study. Journal of psychiatry & neuroscience : JPN, 44(4), 269–276. https://doi.org/10.1503/jpn.180174
31. Kruse, A.O., & Bustillo, J.R. Glutamatergic dysfunction in Schizophrenia. Translation Psychiatry, 12, 500 (2022). https://doi.org/10.1038/s41398-022-02253-w
32. Li, X., Wei, N., Song, J., Liu, J., Yuan, J., Song, R., Liu, L., Mei, L., Yan, S., Wu, Y., Pan, R., Yi, W., Jin, X., Li, Y., Liang, Y., Sun, X., Cheng, J., & Su, H. (2023). The global burden of schizophrenia and the impact of urbanization during 1990-2019: An analysis of the global burden of disease study 2019. Environmental research, 232, 116305. https://doi.org/10.1016/j.envres.2023.116305
33. Li, Z., Zhou, J., Liang, H., Ye, L., Lan, L., Lu, F., Wang, Q., Lei, T., Yang, X., Cui, P., & Huang, J. (2022). Differences in Alpha Diversity of Gut Microbiota in Neurological Diseases. Frontiers in neuroscience, 16, 879318. https://doi.org/10.3389/fnins.2022.879318
34. Ling, Z., Lan, Z., Cheng, Y., Liu, X., Li, Z., Yu, Y., Wang, Y., Shao, L., Zhu, Z., Gao, J., Lei, W., Ding, W., & Liao, R. (2024). Altered gut microbiota and systemic immunity in Chinese patients with schizophrenia comorbid with metabolic syndrome. Journal of translational medicine, 22(1), 729. https://doi.org/10.1186/s12967-024-05533-9
35. Loh, J. S., Mak, W. Q., Tan, L. K. S., Ng, C. X., Chan, H. H., Yeow, S. H., Foo, J. B,. Ong, Y. S., How, C. W., & Khaw, K. Y. (2024). Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduction and Targeted Therapy, 9, 37 https://doi.org/10.1038/s41392-024-01743-1
36. Lotfi, N., Rezaei, N., Rastgoo, E., Khodadoustan Shahraki, B., Zahedi, G., & Jafarinia, M. (2023). Schizophrenia Etiological Factors and Their Correlation with the Imbalance of the Immune System: An Update. Galen medical journal, 12, 1–16. https://doi.org/10.31661/gmj.v12i.3109
37. Marangelo, C., Vernocchi, P., Del Chierico, F., Scanu, M., Marsiglia, R., Petrolo, E., Fucà, E., Guerrera, S., Valeri, G., Vicari, S., & Putignani, L. (2024). Stratification of Gut Microbiota Profiling Based on Autism Neuropsychological Assessments. Microorganisms, 12(10), 2041. https://doi.org/10.3390/microorganisms12102041
38. McCutcheon, R. A., Krystal, J. H., & Howes, O. D. (2020). Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World psychiatry, 19(1), 15–33. https://doi.org/10.1002/wps.20693
39. Mizuki, Y., Sakamoto, S., Okahisa, Y., Yada, Y., Hashimoto, N., Takaki, M., & Yamada, N. (2021). Mechanisms Underlying the Comorbidity of Schizophrenia and Type 2 Diabetes Mellitus. The international journal of neuropsychopharmacology, 24(5), 367–382. https://doi.org/10.1093/ijnp/pyaa097
40. Mosquera, F. E. C., Lizcano Martinez, S., & Liscano, Y. (2024). Effectiveness of Psychobiotics in the Treatment of Psychiatric and Cognitive Disorders: A Systematic Review of Randomized Clinical Trials. Nutrients, 16(9), 1352. https://doi.org/10.3390/nu16091352
41. Pal M. M. (2021). Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Frontiers in human neuroscience, 15, 722323. https://doi.org/10.3389/fnhum.2021.722323
42. Philip, A., & White, N. D. (2022). Gluten, Inflammation, and Neurodegeneration. American journal of lifestyle medicine, 16(1), 32–35. https://doi.org/10.1177/15598276211049345
43. Rajacic, В. К., Sagud, М., Pivac, N., & Begic, D. (2023) Illuminating the way: the role of bright light therapy in the treatment of depression. Expert Review of Neurotherapeutics, 23(12), 1157-1171. https://doi.org/10.1080/14737175.2023.2273396
44. Rarinca, V., Vasile, A., Visternicu, M., Burlui, V., Halitchi, G., Ciobica, A., Singeap, A. M., Dobrin, R., Burlui, E., Maftei, L., & Trifan, A. (2024). Relevance of diet in schizophrenia: a review focusing on prenatal nutritional deficiency, obesity, oxidative stress and inflammation. Frontiers in nutrition, 11, 1497569. https://doi.org/10.3389/fnut.2024.1497569
45. Rawani, N. S., Chan, A. W., Dursun, S. M., & Baker, G. B. (2024). The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants (Basel, Switzerland), 13(6), 709. https://doi.org/10.3390/antiox13060709
46. Rust, C., Asmal, L., O'Hare, M., Pretorius, E., Emsley, R., Seedat, S., & Hemmings, S. (2025). Investigating the gut microbiome in schizophrenia cases versus controls: South Africa's version. Neurogenetics, 26(1), 34. https://doi.org/10.1007/s10048-025-00816-9
47. Samara, M. T., Nikolakopoulou, A., Salanti, G., & Leucht, S. (2019). How Many Patients With Schizophrenia Do Not Respond to Antipsychotic Drugs in the Short Term? An Analysis Based on Individual Patient Data From Randomized Controlled Trials. Schizophrenia bulletin, 45(3), 639–646. https://doi.org/10.1093/schbul/sby095
48. Sampogna, G., Di Vincenzo, M., Giuliani, L., Menculini, G., Mancuso, E., Arsenio, E., Cipolla, S., Della Rocca, B., Martiadis, V., Signorelli, M. S., & Fiorillo, A. (2023). A Systematic Review on the Effectiveness of Antipsychotic Drugs on the Quality of Life of Patients with Schizophrenia. Brain Sciences, 13(11), 1577. https://doi.org/10.3390/brainsci13111577
49. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., & Rastall, R. A. (2019). Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nature Reviews Gastroenterology & Hepatology, 16(10), 605–616. https://doi.org/10.1038/s41575-019-0173-3
50. Sarnyai, Z., & Ben-Shachar, D. (2024). Schizophrenia, a disease of impaired dynamic metabolic flexibility: A new mechanistic framework. Psychiatry research, 342, 116220. https://doi.org/10.1016/j.psychres.2024.116220
51. Sarangi, A., Armin, S., Vargas, A., Chu, V. M., Fain, K., & Nelson, J. (2021). Management of constipation in patients with schizophrenia—a case study and review of literature. Middle East Current Psychiatry, 28(1). https://doi.org/10.1186/s43045-021-00097-6
52. Sarris, J., Ravindran, A., Yatham, L. N., Marx, W., Rucklidge, J. J., McIntyre, R. S., Akhondzadeh, S., Benedetti, F., Caneo, C., Cramer, H., Cribb, L., de Manincor, M., Dean, O., Deslandes, A. C., Freeman, M. P., Gangadhar, B., Harvey, B. H., Kasper, S., Lake, J., Lopresti, A., … Berk, M. (2022). Clinician guidelines for the treatment of psychiatric disorders with nutraceuticals and phytoceuticals: The World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT) Taskforce. The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry, 23(6), 424–455. https://doi.org/10.1080/15622975.2021.2013041
53. Sears, S. M., & Hewett, S. J. (2021). Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Experimental biology and medicine (Maywood, N.J.), 246(9), 1069–1083. https://doi.org/10.1177/1535370221989263
54. Shalon, D., Culver, R. N., Grembi, J. A., Folz, J., Treit, P. V., Shi, H., Rosenberger, F. A., Dethlefsen, L., Meng, X., Yaffe, E., Aranda-Díaz, A., Geyer, P. E., Mueller-Reif, J. B., Spencer, S., Patterson, A. D., Triadafilopoulos, G., Holmes, S. P., Mann, M., Fiehn, O., Relman, D. A., … Huang, K. C. (2023). Profiling the human intestinal environment under physiological conditions. Nature, 617(7961), 581–591. https://doi.org/10.1038/s41586-023-05989-7
55. Singh, D., Oosterholt, S., Pavord, I., Garcia, G., Abhijith Pg, & Della Pasqua, O. (2023). Understanding the Clinical Implications of Individual Patient Characteristics and Treatment Choice on the Risk of Exacerbation in Asthma Patients with Moderate-Severe Symptoms. Advances in therapy, 40(10), 4606–4625.
56. Singh, R., Stogios, N., Smith, E., Lee, J., Maksyutynsk, K., Au, E., Wright, D. C., De Palma, G., Graff-Guerrero, A., Gerretsen, P., Müller, D. J., Remington, G., Hahn, M., & Agarwal, S. M. (2022). Gut microbiome in schizophrenia and antipsychotic-induced metabolic alterations: a scoping review. Therapeutic advances in psychopharmacology, 12. https://doi.org/10.1177/20451253221096525
57. Socała, K., Doboszewska, U., Szopa, A., Serefko, A., Włodarczyk, M., Zielińska, A., Poleszak, E., Fichna, J., & Wlaź, P. (2021). The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacological research, 172, 105840. https://doi.org/10.1016/j.phrs.2021.105840
58. Tsamakis, K., Galinaki, S., Alevyzakis, E., Hortis, I., Tsiptsios, D., Kollintza, E., Kympouropoulos, S., Triantafyllou, K., Smyrnis, N., & Rizos, E. (2022). Gut Microbiome: A Brief Review on Its Role in Schizophrenia and First Episode of Psychosis. Microorganisms, 10(6), 1121.
59. https://doi.org/10.3390/microorganisms10061121
60. Verma, A., Inslicht, S. S., & Bhargava, A. (2024). Gut-Brain Axis: Role of Microbiome, Metabolomics, Hormones, and Stress in Mental Health Disorders. Cells, 13(17), 1436. https://doi.org/10.3390/cells13171436
61. Waclawikova, B., Codutti, A., Alim, K., & El Aidy, S. (2022). Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut microbes, 14(1), 1997296. https://doi.org/10.1080/19490976.2021.1997296
62. Xue, L., Xiuxia, Y., Lijuan, P., Shuying, W., Xiaoyun, Z., Andreassen, O. A., Hu, S., Wang, Y., & Song, X. (2020). Gut Microbiota Markers for Antipsychotics Induced Metabolic Disturbance in Drug Naïve Patients with First Episode Schizophrenia – a 24-Week Follow-Up Study. Nature.
63. Yakabe, K., Higashi, S., Akiyama, M., Mori, H., Murakami, T., Toyoda, A., Sugiyama, Y., Kishino, S., Okano, K., Hirayama, A., Gotoh, A., Li, S., Mori, T., Katayama, T., Ogawa, J., Fukuda, S., Hase, K., & Kim, Y. G. (2022). Dietary-protein sources modulate host susceptibility to Clostridioides difficile infection through the gut microbiota. Cell reports, 40(11), 111332. https://doi.org/10.1016/j.celrep.2022.111332
64. Zajkowska, I., Niczyporuk, P., Urbaniak, A., Tomaszek, N., Modzelewski, S., & Waszkiewicz, N. (2024). Investigating the Impacts of Diet, Supplementation, Microbiota, Gut-Brain Axis on Schizophrenia: A Narrative Review. Nutrients, 16(14), 2228. https://doi.org/10.3390/nu16142228
65. Zheng, P., Zeng, B., & Liu, M. (2019). The gut microbiome from patients with schizophrenia modulates the glutamate- glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Science Advances, 5(2), 8317. https://doi.org/10.1126/sciadv.aau8317
66. Zhou, L., Zeng, Y., Zhang, H., & Ma, Y. (2022). The Role of Gastrointestinal Microbiota in Functional Dyspepsia: A Review. Frontiers in physiology, 13, 910568. https://doi.org/10.3389/fphys.2022.910568
Supplementary files
Review
For citations:
Abdullina L.Kh., Mosina A.A., Sorokina Yu.A., Strueva E.P. The Influence of Gut Microbiota on the Development of Schizophrenia. Ways of Pharmacologic Correction (Systematic Scoping Review). Health, Food & Biotechnology. 2025;7(2):21-30. (In Russ.) https://doi.org/10.36107/hfb.2025.i2.s254