Preview

Health, Food & Biotechnology

Advanced search

Polyresistance of salmonell serovov, isolated from Poultry and from poultry products

https://doi.org/10.36107/hfb.2020.i2.s341

Abstract

Salmonellosis  remains  an  important  problem  not  only  in  the  Russian  Federation,  but throughout the world, both in veterinary medicine and in medicine. Poultry is the most affected by salmonella. Most often, S. Enteritidis, S. Typhimurium, S. Infantis, S. Gallinarum-pullorum are  isolated  from  poultry  and  poultry  products.  It  is  these  salmonella  serovars  that  cause outbreaks of foodborne diseases in humans. For the prevention and treatment of salmonellosis, antibiotics  of  various  groups  are  used: β-lactams,  fluoroquinolones,  cephalosporins,  etc. Unfortunately,  at  present,  most  of  the  latest  generation  antibiotics  are  ineffective.  However, many Salmonella isolates have been found to have multiple drug resistance (MDR). MDR strains began to actively displace those that were resistant to only one or two antibiotics. Antibioticresistant  bacterial  strains  are  transmitted  to  humans  through  the  use  of  insufficiently  heattreated poultry meat, through contact with raw poultry products, as well as through eggs and egg  products.  45  strains  of  Salmonella  isolated  from  sick  poultry,  as  well  as  carcasses  and poultry meat products were studied. Cultivation, study of biochemical, serological properties and  virulence  were  carried  out  according  to  standard  methods.  Sensitivity  to  35  antibiotics was  determined  using  the  disk  diffusion  method.  In  the  study  of  antibiotic  resistance  of Salmonella serovars S. Enteritidis, S. Typhimurium, S. Infantis, it was found that they all had multidrug resistance, and most of the strains were resistant to 11–18 drugs out of 35 used. №t a  single  strain  was  found  that  was  resistant  to  only  1–7  antibiotics.  All  strains  were  multiresistant, with 100% of Salmonella resistant to clindamycin, tylosin, oleandomycin, rifampicin, ampicillin, and penicillin. More than 80% of the studied strains were resistant to erythromycin, doxycycline, tetracycline. Aminoglycosides (kanamycin, neomycin, streptomycin, gentamicin, amikacin),  amphenicols  (chloramphenicol)  suppressed  the  growth  of  60–90%  of  Salmonella strains. The most effective were fluoroquinolones of the 2nd and 3rd generation, capable of inhibiting the growth of 80-100% of isolates, especially ciprofloxacin and enrofloxacin. These drugs are backup antibiotics. However, isolates resistant to ciprofloxacin and enrofloxacin have been found, which is alarming. 4th generation fluoroquinolones have been shown to be less effective, especially for S. infantis. Perhaps this is due to the use of fluoroquinolones among poultry  at  large  poultry  enterprises  for  the  prevention  of  salmonellosis.  Only  about  30%  of isolates  were  resistant  to  first-generation  cephalosporins  (cefazolin,  cephalexin).  Among the  3rd  generation  cephalosporins,  the  most  effective  were  cephaperazone  and  especially ceftriaxone, to which no Salmonella isolate was resistant. 47% of S. Typhimurium is resistant to cefepime (4th generation cephalosporin), while sensitivity to other serovariants is up to 67%.

About the Authors

M. N. Loshchinin
FSBSI «Federal Scientific Center – All-Russian Research Institute of Experimental Veterinary Medicine named after K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences»
Russian Federation

Maxim N. Loshchinin

Ryazansky pr. 24 to 1, Moscow



N. A. Sokolova
FSBSI «Federal Scientific Center – All-Russian Research Institute of Experimental Veterinary Medicine named after K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences»
Russian Federation

Nina A. Sokolova

Ryazansky pr. 24 to 1, Moscow



A. M. Abdullaeva
FSBEI HE «Moscow State University of Food Production»
Russian Federation

Asiyat M. Abdullaeva



References

1. Abdullaeva, A. M., Smirnova, I. R., & Trokhimets, E. V. (2017). Microbiological control of semi-finished products from turkey meat during refrigerated storage. Veterenaria [Veterinary Scie nce], 8, 49–53.

2. Abdullaeva, A. M., Blinkova, L. P., & Pershina, T. A. (2019). Testing bacteriophages as safe means of protection against microbial contamination of minced chicken. Problemy veterinarnoj sanitarii, gigieny i ekologii [Problems of veterinary sanitation, hygiene and ecology], 3(31), 11–15. http://dx.doi.org/10.25725/vet.san.hyg.ecol.201903004

3. Akhmetova, L. I., & Rozanova, S. M. (2000). Anti microbial sensitivity of Shigella and Salmonella strains isolated in Yekaterinburg. Klinicheskaya mikrobiologiya i antimikrobnaya himioterapiya [Cli ni cal Microbiology and Antimicrobial Che motherapy], 3(2), 58–62.

4. Vitkova, O. N. (2016). Analysis of the epizootic situation for salmonellosis based on the data of veterinary statistical reporting. In Aktual'nye veterinarnye i tekhnologicheskie resheniya v promyshlennom pticevodstve.[ Actual veterinary and technological solutions in the poultry industry.] http://zhukov-vet.ru›doc/bird/Виткова.pdf (accessed on: 25.06.2019).

5. Eliusizova, A. B., Shubin, F. N., Kuznetsova, N. A., & Bakholdina, S. I. (2010). Salmonella fluoroquinolone sensitivity in Siberia and the Far East. Tihookeanskij medicinskij zhurnal [Pacific Medical Journal], 4, 51–54.

6. Loshchinin, M. N., & Sokolova, N. A. (2015). Antimicrobial sensitivity of Salmonella strains. Trudy VIEV[ARIEV Proceedings], 78, 250–256.

7. Mindlin, S. Z., & Petrova, M. A. (2017). On the origin and spread of antibiotic resistance: results of studying ancient bacteria from permafrost sediments. Molekulyarnaya genetika mikrobiologiya i virusologiya [Molecular genetics, microbiology and virology], 35(4), 123–131.

8. Pimenova, V. V., Laishevtsev, A. I., & Pimenov, N. V. (2017). The main directions of health-improving measures for salmonellosis of birds: principles and disadvantages of antibiotic treatments. Russian Journal of Agricultural and Socio-Economic Sciences, 11(71), 496–510. http://dx.doi.org/10.18551/rjoas.2017-11.66

9. Pimenov, N.V., & Laishevtsev, A.I. (2017). Sovremennye aspekty bor’by s sal’monellyoznoj infekciej [Modern aspects of the fight against salmonella infection]. Publishing house “Staraya Basmannaya”. Pliska, A. A., Samokrutova, O. N., Seredkina, I. N., Ablov, A. M., Batomunkuev, A. S., Baryshnikov, P. I., & Anganova, E. V. (2012). Antibiotic sensitivity of microorganisms isolated during intestinal infections of dogs in the conditions of the Baikal region. Vestnik Omskogo gosudarstvennogo agrarnogo universiteta[Bulletin of Omsk State Agrarian University], 4(8), 65–69.

10. Rozhnova, S. Sh., Khristyunina, O. A., & Agafonova, E. I. (2011). The role of phenotypic typing methods for Salmonella in the monitoring of Salmonella. Epidemiologiya i infekcionnye bolezni, aktual’nye voprosy [Epidemiology and infectious diseases, current issues], 3, 41–47.

11. Sokolova, N. A., Abdullaeva, A. M., & Loshchinin, M. N. (2015). Vozbuditeli zooantroponozov, pishchevyh otravlenij, porchi syr’ya i produktov zhivotnogo proiskhozhdeniya [Causative agents of zooanthroponosis, food poisoning, spoilage of raw materials and animal products]. DeLi plyus.Subbotin, V. V., Loshchinin, M. N., Sokolova, N. A., & Kolomytsev, S. A. (2013). Salmonellosis is an urgent problem in veterinary medicine. Veterinariya i kormlenie [Veterinary and feeding], 4, 59–61.

12. Adzitey, F., Teye, G. A., & Amoako, D. G. (2020). Prevalence, phylogenomic insights, and phenotypic characterization of Salmonella enterica isolated from meats in the Tamale metropolis of Ghana. Food Science & Nutrition, 8(7), 3647–3655. https://doi.org/10.1002/fsn3.1647

13. Chan, M. (2012). Antimicrobial resistance in European Union and World: Keynote address at the conference on Combating antimicrobial resistance: time for action. Copenhagen, Denmark 14 march Available at: www.who.int D’Aoust, J. Y. (1991). Pathogenicity of foodborne Salmonella. The International Journal of Food Microbiology, 12(1), 17–40. http://dx.doi:10.1016/0168-1605(91)90045-q

14. D’Costa, V. M., McGrann, K. M., Hughes, D. W., & Wright, G. D. (2006). Sampling the antibiotic resistome. Science, 311(5759), 374–377. http://dx.doi:10.1126/science.1120800

15. Gelband, H., Molly Miller, P., Pant, S., Gandra, S., Levinson, J., Barter, D., White, A., & Laxminarayan, R. (2015). The state of the world’s antibiotics 2015. Wound Healing Southern Africa,8, 30–34.

16. Goncuoglu, M., Ormanci, F. S. B., Uludag, M. & Cil, G. I. (2016), Prevalence and Antibiotic Resistance of Salmonella SPP. and Salmonella Typhimurium in Broiler Carcasses Wings and Liver. Journal of Food Safety, 36(4), 524–531. http://dx.doi:10.1111/jfs.12272

17. Lee, H. J., Youn, S. Y., Jeong, O. M., Kim, J. H., Kim, D. W., Jeong, J. Y., Kwon, Y. K. & Kang, M. S. (2019), Sequential Transmission of Salmonella in the Slaughtering Process of Chicken in Korea. Journal of Food Science, 84, 871–876. http://dx.doi:10.1111/1750-3841.14493

18. Nikaido, H. (2009). Multidrug resistance in bacteria. Annual Review of Biochemistry, 78, 119–146. http://dx.doi:10.1146/annurev.biochem.78. 082907.145923

19. Nhung, N. T., Chansiripornchai, N., & CarriqueMas, J. J. (2017). Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Frontiers in Veterinary Science, 4, 126. http://dx.doi:10.3389/fvets.2017.00126

20. Sánchez Salazar, E., Gudiño, M.E., Sevillano, G., Zurita, J., Guerrero López, R., Jaramillo, K. & Calero Cáceres, W. (2020). Antibiotic resistance of Salmonella strains from layer poultry farms in central Ecuador. Journal of Applied Microbiology, 128, 1347-1354. http://dx.doi:10.1111/jam.14562

21. Siriken, B., Türk, H., Yildirim, T., Durupinar, B. & Erol, I. (2015), Prevalence and Characterization of Salmonella Isolated from Chicken Meat in Turkey. Journal of Food Science, 80, M1044-M1050. http://dx.doi:10.1111/1750-3841.12829

22. Shrestha, A., Bajracharya, A. M., Subedi, H., Turha, R. S., Kafle, S., Sharma, S., Neupane, S., Chaudhary, D. K. (2017). Multi-drug resistance and extended spectrum beta lactamase producing Gram negative bacteria from chicken meat in Bharatpur Metropolitan, Nepal. BMC Research Notes,10, 574. https://doi.org/10.1186/s13104-017-2917-x

23. Yang, X., Wu, Q., Zhang, J., Huang, J., Chen, L., Wu, S., & Wei, X. (2019). Prevalence, bacterial load, and antimicrobial resistance of Salmonella serovars isolated from retail meat and meat products in China. Frontiers in Microbiology, 10, 2121. http://dx-.doi.org/10.3389/fmicb.2019.02121

24. Yu, H., Qu, F., Shan, B., Huang, B., Jia, W., Chen, C., Li, A., Miao, M., Zhang, X., Bao, C., Xu, Y., Chavda, K. D., Tang, Y.-W., Kreiswirth, B. N., Du, H., Chen, L. (2016). Detection of the mer-1 Colistin Resistance Gete in Carbapenem-Resistant Enterobacteriaceae from Different Hospitals in China. Antimicrobial Agents and Chemotherapy, 60(8), 5033–5. http://dx.doi:10.1128/aac.00440-16

25. Zhao, X., Ye, C., Chang, W., & Sun, S. (2017). Serotype Distribution, Antimicrobial Resistance, and Class 1 Integrons Profiles of Salmonella from Animals in Slaughterhouses in Shandong Province, China. Frontiers in Microbiology, 8, 1049. Published 2017 Jun 21. http://dx.doi:10.3389/fmicb.2017.01049

26. Zou, W., Frye, J. G., Chang, C. W., Liu, J., Cerniglia, C. E., & Nayak, R. (2010). Microarray analysis of antimicrobial resistance genes in Salmonella entericafrom preharvest poultry environment. Journal of Applied Microbiology, 107(3), 906–914. http://dx.doi.org/10.1111/j.1365-2672.2009.04270.x


Review

For citations:


Loshchinin M.N., Sokolova N.A., Abdullaeva A.M. Polyresistance of salmonell serovov, isolated from Poultry and from poultry products. Health, Food & Biotechnology. 2020;2(2):22-33. (In Russ.) https://doi.org/10.36107/hfb.2020.i2.s341

Views: 646


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)