Advantages of Using Neurotechnologies in the Food Industry
https://doi.org/10.36107/hfb.2020.i1.s266
Abstract
The article discusses the global growth in interest in neuromarketing from the first official neuromarketing study to the present day. A brief list of neuromarketing definitions in chronological sequence is given and key changes in the definition are traced. A detailed analysis of indicators of growing interest in neuromarketing technologies as indicators of potential advantages in terms of increasing publication activity, growing interest in using neuromarketing technologies in business, as well as increasing popularity of the direction is made. The review of works devoted to bibliographic analysis, meta-analysis of works in the field of neuromarketing as a key indicator of growth in demand for the direction is given. The main “highlights” of publishing activity are considered, as well as dynamic growth of publications according to Google Scholar data. Awareness and attitude of the general public and business to neurotechnologies and neuromarketing as well as their readiness to use these technologies are shown in dynamics. The process of growing interest in neuromarketing from business communities is highlighted. The main force of consolidation of neuromarketing advantages is revealed. The reasoning of the research community in favor of using neuromarketing techniques is shown. The main strategies of companies’ work to bring successful “new” product to the market with statistical data are listed. The main advantages of technologies potentially increasing the chances of success of a new product are listed. We speak about neurotechnologies as a tool for obtaining valuable marketing information in the food industry: from the stage of development to the stage of product implementation. The main areas of application of neuromarketing technologies in business are listed. The features of application of neurotechnologies in the food industry are shown. Some researches in the field of sensory marketing which testify to presence of indirect influence of sensory stimuli on perception of a product are designated. The main key advantages of neuromarketing technologies, which are consistent with the latest achievements in neuromarketing, as well as those advantages which are of discussion nature, are marked out. The advantages identified relate to both the data collection technology and its processing, which includes the potential of the technology in mass application.
About the Authors
N. S. BukreevRussian Federation
Nikita S. Bukreev
ap. № 1474, bld. 1, 42, Bolshoy Blv,Ter. Skolkovo Innovation Center, Moscow, 121205
G. V. Paramonov
Russian Federation
Grigory V. Paramonov
V. A. Soumerin
Russian Federation
Viatcheslav A. Soumerin
M. A. Shank
Russian Federation
Mikhail A. Shank
References
1. Ambler, T., Ioannides, A., & Rose, S. (2000). Brands on the brain: neuro-images of advertising. Business Strategy Review, 11(3), 17–30. https://doi.org/10.1111/1467-8616.00144
2. Ariely, D., & Berns, G. (2010). Neuromarketing: the hope and hype of neuroimaging in business. Nature Reviews Neuroscience, 11(4), 284–292. https://doi.org/10.1038/nrn2795
3. Ariely, D., & Berns, G. S. (2010). Neuromarketing: The hope and hype of neuroimaging in business. Nature Reviews Neuroscience, 11, 284–292. https://doi.org/10.1038/nrn2795
4. Berns, G. S. & Moore, S. E. (2012). A neural predictor of cultural popularity. Journal of Consumer Psychology, 22(1), 154–160. https://doi.org/10.1016/j.jcps.2011.05.001
5. Boksem, M. A. S., & Smidts, A. (2015). Brain responses to movie trailers predict individual preferences for movies and their population-wide commercial success. Journal of Marketing Research, 52(4), 482–492. https://doi.org/10.1509/jmr.13.0572
6. Burgos-Campero, A. A. & Vargas-Hernandez J. G. (2013). Analytical approach to neuromarketing as a business strategy. Procedia – Social and Behavioral Sciences, 99, 517–525. https://doi.org/10.1016/j.sbspro.2013.10.521
7. Camerer, C., Loewenstein, G. & Prelec, D. (2005). Neuroeconomics: How neuroscience can inform economics. Journal of economic Literature, 43(1), 9–64. https://doi.org/10.1257/0022051053737843
8. Cheng, T. C. E., Lai, L. C. F., & Yeung, A .C. L. (2008). The driving forces of customer loyalty: a study of internet service providers in Hong Kong. International Journal of E-Business Research, 4(4), 26–42. https://doi.org/10.4018/jebr.2008100103
9. Cherubino, P., Martinez-Levy, A. C., Caratù, M., Cartocci, G., Flumeri, G. Di, Modica, E., Rossi, D., Mancini, M., & Trettel, A. (2019). Consumer behaviour through the eyes of Neurophysiological measures: State-of-the-art and future trends. Computational Intelligence and Neuroscience, Special Issue, 2019. https://doi.org/10.1155/2019/1976847
10. Constantinescu, M., Orindaru, A., Pachitanu, A., Rosca, L., Caescu, S.-C., & Orzan, M. C. (2019). Attitude evaluation on using the neuromarketing approach in social media: Matching company’s purposes and consumer’s benefits for sustainable business growth. Sustainability, 11(24), 7094. https://doi.org/10.3390/su11247094
11. de Oliveira, J. H. C., & de Giraldi, J. M. E. (2017). What is Neuromarketing? A proposal for a broader and more accurate definition. Global Business & Management Research, 9(2), 19-29.
12. Egermann, H. (2019). Creating a brand image through music: Understanding the Psychological mechanisms behind audio branding. In M. Grimshaw, M. Walther-Hansen, & M. Knakkergaard (Eds.), The Oxford Handbook of Sound and Imagination (vol. 2). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190460242.013.29
13. Falk, E., O’Donnell, M., Tompson, S., Gonzalez, R., Dal, Cin, S., & Strecher, V. (2016). Functional brain imaging predicts public health. Social Cognitive and Affective Neuroscience, 11(2), 204–214, https://doi.org/10.1093/scan/nsv108
14. Gaillet, M., Sulmont-Rossé, C., Issanchou, S., Chabanet S., & Chambaron, S. (2013). Priming effects of an olfactory food cue on subsequent food-related behaviour.Food Quality and Preference, 30(2), 274–281. https://doi.org/10.1016/j.foodqual.2013.06.008
15. Gaillet-Torrent, M., Sulmont-Rossé, C., Issanchou, S., Chabanet, C., & Chambaron, S. (2014). Impact of a non-attentively perceived odour on subsequent food choices. Appetite, 76, 17–22. https://doi.org/10.1016/j.appet.2014.01.009
16. Gang, D.J., Lin, W., Qi, Z., & Yan, L.L. (2012). Neuromarketing: Marketing through Science. In Service Sciences, International Joint Conference on Neural Networks (vol. 1, pp. 285–289). https://doi.org/10.1109/IJCSS.2012.65
17. Gkaintatzis, A., Lubbe, R., Karantinou, K., & Constantinides, E. (2019). Consumers’ cognitive, emotional and behavioral responses towards background music: An EEG study. In 15th International Conference on Web Information Systems and Technologies (pp. 314–318). SCITEPRESS. https://doi.org/10.5220/0008346603140318.
18. Harzing, A.-W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics, 106, 787–804. https://doi.org/10.1007/s11192-015-1798-9
19. Hedgcock, W., & Rao A.R. (2009). Trade-off aversion as an explanation for the attraction effect: A functional magnetic resonance imaging study. Journal of Marketing Research, 46(1), 1–13. https://doi.org/10.1509/jmkr.46.1.1
20. Horska, E., Bercik, J., Krasnodebski, A., MatysikPejas, R., & Bakayova, H. (2016). Innovative approaches to examining consumer preferences when choosing wines. Agricultural Economics (Zemědělská Ekonomika), 62(3), 124–133. https://doi.org/10.17221/²90/2015-AGRICECON
21. Huang, J., & Wan, X. (2019). The color–flavor incongruency effect in product evaluation and brand perception. Journal of Consumer Behaviour, 18(6), 484–495. https://doi.org/10.1002/cb.1787
22. Hubert, M., & Hubert, M. (2020). Consumer Neuroscience: Recent theoretical and methodological developments for research and practice using a cube model. Organizational Neuroethics (pp. 67–86). Springer. https://doi.org/10.1007/978-3-030-27177-0_6
23. Hubert, M., & Kenning, P. (2008) A Current overview of consumer Neuroscience. Journal of Consumer Behaviour, 7, 272–292. http://dx.doi.org/10.1002/cb.251
24. Hubert, M., & Kenning, P. (2008). A current overview of consumer neuroscience. Neuromarketing, 7(4-5). https://doi.org/10.1002/cb.251
25. Hubert, M. (2010). Does neuroeconomics give new impetus to economic and consumer research? Journal of Economic Psychology, 31(5), 812–817. https://doi.org/10.1016/j.joep.2010.03.009
26. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature reviews neuroscience, 2(3), 194–203. https://doi.org/10.1038/35058500
27. Kemp, E. A., Williams, K., Min, D. J. , & Chen, H. (2019). Happy feelings: Examining music in the service environment. International Hospitality Review, 33(1), 5-15. https://doi.org/10.1108/IHR-10-2018-0019
28. Kenning, P., & Linzmajer, M. (2011). Consumer neuroscience: An overview of an emerging discipline with implications for consumer policy. Journal Für Verbraucherschutz Und Lebensmittelsicherheit, 6(1), 111–125. https://doi.org/10.1007/s00003-010-0652-5
29. Khushaba, R. N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B. E., & Townsend, C. (2013). Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Systems with Applications, 40(9), 3803-3812. https://doi.org/10.1016/j.eswa.2012.12.095
30. Knutson, B., Rick S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53(1), 147–156. https://doi.org/10.1016/j.neuron.2006.11.010
31. Kroeber-Riel, W. (1979). Activation research: Psychobiological approaches in consumer research. Journal of Consumer Research, 5(4), 240–250. https://doi.org/10.1086/208736
32. Kühn, S., Strelow, E., & Gallinat, J. (2016). Multiple “buy buttons” in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI. NeuroImage, 136, 122–128. http://dx.doi.org/10.1016/j.neuroimage.2016.05.021
33. Kumar, H., & Singh, P. (2015). Neuromarketing: An Emerging tool of market research. International Journal of Engineering and Management Research, 5(6), 530–535.
34. Lee, N., Broderick, A. J., & Chamberlain, L. (2007). What is ‘neuromarketing’? A discussion and agenda for future research. International Journal of Psychophysiology, 63(2), 199–204. https://doi.org/10.1016/j.ijpsycho.2006.03.007
35. Leenders, M. A. A. M., Smidts, A., & El Haji, A. (2019). Ambient scent as a mood inducer in supermarkets: The role of scent intensity and time-pressure of shoppers. Journal of Retailing and Consumer Services, 48, 270–280. https://doi.org/10.1016/j.jretconser.2016.05.007
36. Lieberman, M. D. (2007). Social cognitive neuroscience: a review of core processes. Annual Review of Psychology, 58, 259–289.
37. Mannan, S. K., Kennard, C., & Husain, M. (2009). The role of visual salience in directing eye movements in visual object agnosia. Current biology, 19(6), R247–R248. https://doi.org/10.1016/j.cub.2009.02.020
38. McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural Correlates of Behavioral Preference for Culturally Familiar Drinks. Neuron, 44(2), 379–387. https://doi.org/10.1016/j.neuron.2004.09.019
39. Milosavljevic, M., Navalpakkam, V., Koch, C., & Rangel, A. (2012). Relative visual saliency differences induce sizable bias in consumer choice. Journal of Consumer Psychology, 22(1), 67–74. https://doi.org/10.1016/j.jcps.2011.10.002
40. Molchanov, N. N., Muravieva, O. S ., & Galai, N. I. (2019). Neurotechnologies: Assessment of development prospects in Russia. Vestnik Udmurtskogo universiteta. Seriya “Ekonomika i parvo” [Bulletin of the Udmurt University. Economics and Law Series], 2(29), 142–151.
41. Nilashi, M., Samad S., Ahmadi, N., Ahani, A., Abumalloh, R.A., Asadi, S., Abdullah, R., Othman, I., & Yadegaridehkordi, E. (2020). Neuromarketing: A review of research and implications for marketing. Journal of Soft Computing and Decision Support Systems, 7(2), 23–31.
42. Oliver, R. L. (1999). Whence consumer loyalty? Journal of marketing, 63(4), 33–44. https://doi.org/10.2307/1252099
43. Ozkul, E., Boz, H., Bilgili, B., & Koc, E. (2019). What colour and light do in service atmospherics: A neuro-marketing perspective. In M. Volgger & D. Pfister (Eds.), Atmospheric turn in culture and tourism: Place, design and process impacts on customer behaviour, marketing and branding (vol. 16, pp. 223-244). Emerald Publishing Limited. https://doi.org/10.1108/S1871-317320190000016022
44. Plassmann, H., Kenning, P., Deppe, M., Kugel, H., & Schwindt, W. (2008). How choice ambiguity modulates activity in brain areas representing brand preference: Evidence from consumer neuroscience. Journal of Consumer Behaviour, 7(4–5), 360–367. https://doi.org/10.1002/cb.257
45. Plassmann, H., O’Doherty, J., Shiv, B., & Rangel A. (2008). Marketing actions can modulate neural representations of experienced pleasantness. PNAS, 105(3), 1050–1054. https://doi.org/10.1073/pnas.0706929105
46. Plassmann, H., Ramsøy, T. Z. & Milosavljevic, M. (2012). Branding the brain: A critical review and outlook. Journal of consumer psychology, 22(1), 18–36. https://doi.org/10.1016/j.jcps.2011.11.010
47. Plassmann, H., Venkatraman, V., Huettel, S. & Yoon, C. (2015). Consumer neuroscience: Applications, challenges, and possible solutions. Journal of Marketing Research, 52(4), 427–435. https://doi.org/10.1509/jmr.14.0048
48. Proserpio, C., Invitti, C., Boesveldt, S., Pasqualinotto, L., Laureati, M., Cattaneo, C., & Pagliarini, E. (2019). Ambient odor exposure affects food intake and sensory specific appetite in obese women. Frontiers in Psychology, 10, 7. https://doi.org/10.3389/fpsyg.2019.00007
49. Riedl, R., Banker, R. D., Benbasat, I., Davis, F. D., Dennis, A. R., Dimoka, A., Gefen, D., Gupta, A., Ischebeck, A., Kenning, P., Müller-Putz, G., Pavlou, P. A., Straub, D. W., vom Brocke, J., & Weber, B. (2010). On the foundations of NeuroIS: Reflections on the Gmunden Retreat 2009. Communications of the Association for Information Systems, 27, 243–264. https://doi.org/10.17705/1CAIS.02715
50. Salnikova, E., Baglione, S. L., & Stanton, J. L. (2019). To launch or not to launch: An empirical estimate of new food product success rate. Journal of Food Products Marketing, 25(7), 771–784.
51. Schneider, T., & Woolgar, S. (2012). Technologies of ironic revelation: Enacting consumers in neuromarkets. Consumption Markets & Culture, 15(2), 169–189. https://doi.org/10.1080/10253866.2012.6
52. Shahriari, M., Feiz, D., Zarei, A., & Kashi, E. (2019). The meta-analysis of neuromarketing studies: Past, present and future. Neuroethics, 2019. https://doi.org/10.1007/s12152-019-09400-z
53. Shiv, B., & Fedorikhin, A. (1999). Heart and mind in conflict: The interplay of affect and cognition in consumer decision making. Journal of consumer Research, 26(3), 278–292. https://doi.org/10.1086/209563
54. Shiv, B., Loewenstein, G., Bechara, A., Damasio, H., & Damasio, A.R. (2005). Investment behavior and the negative side of emotion. Psychological science, 16(6), 435–439. https://doi.org/10.1111/j.0956-7976.2005.01553.x
55. Singer E. (2004). They know what you want – if neuromarketers can find the key to our consumer desires, will they be able to manipulate what we buy. New scientist, 183(2458), 36–37.
56. Spence, C. (2020). On the ethics of neuromarketing and sensory marketing. In J. Martineau, E. Racine (Eds.), Organizational Neuroethics. Advances in Neuroethics (pp. 9-29). Springer.
57. Stasi, A., Songa, G., Mauri, M., Ciceri, A., Diotallevi, F., Nardone, G., & Russo, V. (2018). Neuromarketing empirical approaches and food choice: A systematic review. Food Research International, 108, 650–664. http://dx.doi.org/10.1016/j.foodres.2017.11.049
58. Telpaz, A., Webb, R., & Levy, D.J. (2015). Using EEG to predict consumers’ future choices. Journal of Marketing Research, 52(4), 511–529. https://doi.org/10.1509/jmr.13.0564
59. Tiwari, S. (2020). Neuromarketing and Information Technology. CYBERNOMICS, 2(1), 21–24. https://www.cybernomics.in/index.php/cnm/article/view/188
60. Van Doorn, G., & Miloyan, B. (2018). The Pepsi paradox: A review. Food Quality and Preference, 65, 194–197. http://dx.doi.org/10.1016/j.foodqual.2017.11.007
61. Venkatraman, V., Dimoka, A., Pavlou, P.A., Vo, K., Hampton, W., Bollinger, B., Hershfield, H.E., Ishihara, M., & Winer, R.S. (2015). Predicting advertising success beyond traditional measures: New insights from neurophysiological methods and market response modeling. Journal of Marketing Research, 52(4), 436–452. https://doi.org/10.1509/jmr.13.0593
62. Vlăsceanu, S. (2014). Neuromarketing and Neuroethics Procedia. Social and Behavioral Sciences, 127, 763–768. https://doi.org/10.1016/j.sbspro.2014.03.351
63. Yağcı, M., İ., Kuhzady, S., Balık, Z., & Öztürk, L. (2018). In Search of consumer’s black box: A bibliometric analysis of Neuromarketing research. Tüketici ve Tüketim Araştırmaları Dergisi, 2018(1), 101–134.
64. Yang, Z. & Peterson, R.T. (2004). Customer perceived value, satisfaction, and loyalty: The role of switching costs. Psychology & marketing, 21(10), 799–822.
Review
For citations:
Bukreev N.S., Paramonov G.V., Soumerin V.A., Shank M.A. Advantages of Using Neurotechnologies in the Food Industry. Health, Food & Biotechnology. 2020;2(1):34-48. (In Russ.) https://doi.org/10.36107/hfb.2020.i1.s266