Quality Control of Bottling and Labelling Food Products with the use of Intelligent Technologies
https://doi.org/10.36107/hfb.2020.i1.s295
Abstract
The article is devoted to improving the efficiency of the food enterprise by developing and implementing an automated control system for the technological manipulator on the line of filling and labeling of food beverages using intelligent technologies. The article defines the relevance of the topic, provides a literary review of production lines for filling and labeling of food products, and analyzes the work on mathematical modeling of the kinematics and dynamics of machines and aggregates combined in food production lines, taking into account their interaction, their interaction with the environment. The necessity of solving kinematic problems, especially problems of reverse kinematics of the robot manipulator, is shown. The analysis carried out in the work showed. that the existing universal algorithms for calculating kinematics are simple to write in General, but due to a number of unavoidable disadvantages of resource consumption and have in some cases a large computational error. If technological manipulators are forced to work in areas where this method leads to significant computational errors, this may slow down the movement of the manipulator, which also leads to a decrease in productivity, or require forced changes to the operating mode in order to remove the working body from the center of the working area, which will take up more space for each manipulator. Therefore, instead of using a universal algorithm for calculating kinematics, it is proposed to use a set of simple trigonometric expressions for the conditions of specific movements, which allows maintaining the required accuracy throughout the entire working area. To control the manipulator, find the optimal trajectory, and interact with the reality model program (in the SolidWorks environment), we used programs created in the LabVIEW environment with NISoftMotion tools as a controller for controlling the position of the model. To automate the quality control of filling and labeling of food products and modernize the control system of the technological manipulator, algorithms for solving the inverse kinetic problem for robots such as PUMA, SCARA and KUKA, as well as software that implements the developed algorithms, have been developed. The results of the analysis of the use of the optical product recognition system, which takes into account the joint movement of the manipulator and the products, are shown. As a result of the research, a system of virtual prototyping of the mechatronic system has been developed, which allows selecting the manipulator motion control controller and the required motors and parameters for optimizing the filling line and labeling of food products using intelligent technology. Based on the results obtained, an improved model of the Puma 560 robot has been developed, which includes means for moving the manipulator using intelligent technologies, which will increase the efficiency of the filling line and food labeling, and improve their quality indicators.
About the Authors
M.T.H. ErakiEgypt
Eraki Mohamed Taher Hamed
I. G. Blagoveshchenskiy
Russian Federation
Ivan G. Blagoveshchenskiy
11 Volokolamskoe highway, Moscow, 125080
V. G. Blagoveshchenskiy
Russian Federation
Vladislav G. Blagoveshchenskiy
D. V. Zubov
Russian Federation
Dmitry V. Zubov
References
1. Alavandar, S., & Nigam, M. J. (2008). Neuro-Fuzzy based Approach for Inverse Kinematics Solution of Industrial Robot Manipulators. International Journal of Computers, Communications and Control, 3, 224–234.
2. Alcin, O. F. (2016). Extreme learning machine based robotic arm modeling. International Journal of Robotics Research, 1160–1163.
3. Angeles, J. (1985). On the numerical solution for inverse kinematic problem. International Journal Robotics, 4 (2), 21–37.
4. Awcock, G. J. (1995). Applied Image Processing Hand Book. Macmillan Press Ltd.
5. Baglietto, P. (1996). Image Processing on HighPerformance RISC Systems. Proceedings of the IEEE, 7, 917-930.
6. Balykhin, M. G., & Blagoveshchenskiy, I. G. (2018). Quality control of confectionery products using various image processing methods. In Sovremennoe sostoyanie i perspektivy razvitiya upakovki v pishchevoj promyshlennosti [Current status and development prospects of packaging in the food industry], (pp. 82 – 85).
7. Balykhin, M. G., Borzov, A. B., & Blagoveshchensky, I. G. (2017). Metodologicheskie osnovy sozdaniya ekspertnyh sistem kontrolya i prognozirovaniya kachestva pishchevoj produkcii s ispol'zovaniem intellektual'nyh tekhnologij [Methodological foundations of creating expert systems for monitoring and forecasting the quality of food products using intelligent technologies]. Izdatel’stvo Frantera.
8. Bastuchech, C. M. (1989). Techniques for Real-time Generation of Range Images. Proceedings of the IEEE, 262-268.
9. Belousov, I. R. (2002). Formirovanie uravnenij dinamiki robotov-manipulyatorov [Formation of dynamics equations for robotic manipulators]. Institut prikladnoy matematiki im. M.V. Keldysha RAN.
10. Belousov, I. R., Boguslavsky, A. A., Emelyanov, S. N., Okhotsimsky, D. E., Platonov, A. K., Sazonov, V. V., Sokolov, S. M. (1999). Vzaimodejstvie robota manipulyatora s podvizhnymi ob"ektami [Interaction of a robotic manipulator with moving objects]. Institut prikladnoy matematiki im. M.V. Keldysha RAN.
11. Belyanin, P. N. (1992). Kinematicheskie skhemy, sistemy i elementy promyshlennyh robotov [Kinematic schemes, systems and elements of industrial robots].Mashinostroyeniye.
12. Belyanin, P. N. (2000). State and development of robot technology. Problemy mashinostroyeniya i nadezhnost’ mashin. RAN [Engineering problems and machine reliability. RAS], 2, 85 - 96.
13. Benjanarasuth, T., Sowannee, N., & Naksuk, N. (2010). Two-degree-of-freedom simple servo adaptive control for SCARA robot. ICCAS 2010, 480-484. http://doi.org/10.1109/ICCAS.2010.5669904
14. Blagoveshchenskaya, M. M. (2009). Osnovy stabilizacii processov prigotovleniya mnogokomponentnyh pishchevyh mass [Basics of stabilization of the preparation of multicomponent masses]. Izdatel’stvo Frantera.
15. Blagoveshchenskaya, M.,M., Blagoveshchensky, I. G., & Nazoykin E. A. (2015). The technique of automatic assessment of the quality of food products based on the theory of artificial neural networks. Pishchevaya promyshlennost’ [Food Industry], 2, 42 - 45.
16. Blagoveshchenskaya, M. M., & Zlobin, L. A. (2005). Informacionnye tekhnologii sistem upravleniya tekhnologicheskimi processami [Information technology of process control systems]. Izdatel’stvo Vysshaya shkola.
17. Blagoveshchenskaya, M. M., & Santon Kunnikhan, M. P. (2017). The structure of dosing control systems using neural networks. In Obshcheuniversitetskaya studencheskaya konferenciya studentov i molodyh uchenyh «Den' nauki» [University Conference of Students and Young Scientists “Science Day”] (s. 263 – 267).
18. Blagoveshchenskaya, M. M., Shaverin, A. V., & Blagoveshchenskiy, I. G. (2012). Automation of control of taste indicators of chocolate products based on the use of neural networks. Khraneniye i pererabotka sel’skokhozyaystvennogo syr’ya [Storage and processing of agricultural raw materials], 8, 50 - 52.
19. Blagoveshchenskiy, I. G., Makarovskaya, Z. V., Blagoveshchenskaya, M. M., Chuvakhin, S. V., & Mitin, V. V. (2019). Using a digital video camera as an intelligent sensor of an automatic control system for the molding of granular food masses. In Intellektual'nye sistemy i tekhnologii v otraslyah pishchevoj promyshlennosti [Intelligent systems and technologies in food industries](s. 71-75).
20. Blagoveshchenskiy, I. G., Nosenko S.M. (2015). Expert intellectual system for monitoring the process of molding fondant sweets using the vision system. Food Industry [Pishchevaya promyshlennost’], 6, 32 - 36.
21. Brian, H. (2008). What is next for Robotics, Robotic Industries Association. International Journal Robotics, 6(4), 52–57.
22. Chaudhary, H., Panwar, V., & Prasad, R. (2014). Adaptive neuro fuzzy based hybrid force/position control for an industrial robot manipulator. Journal of Intelligent Manufacturing, 27(6), 1299–1308.
23. Christe, B. (2009). Robotic Application Research: Past, Present. International Journal Robotics, 3(2), 43–47.
24. Craig, J. (2005). Introduction to Robotics Mechanics and Control (Third Edition). Pearson Education.
25. Davies, E. R. (1990). Machine Vision: Theory, Algorithms, Practicalities Hand Book. Academic Press Limited.
26. Garev, K. V., Blagoveshchenskiy, I. G., Nazoykin, E. A., Blagoveshchenskiy, V. G., & Makarovskaya, Z. V. (2019). Using technical vision as an innovative solution in smart home systems. In Intellektual'nye sistemy i tekhnologii v otraslyah pishchevoj promyshlennosti [Intelligent systems and technologies in the food industry] (s.47-52).
27. Goncharov, K. A., Blagoveshchensky, I. G., Nazoykin, E. A., Blagoveshchensky, V. G., & Makarovskaya, Z. V. (2019). Using the OPENCV library for working with technical vision. In Intellektual'nye sistemy i tekhnologii v otraslyah pishchevoj promyshlennosti [Intelligent systems and technologies in the food industry] (s. 53 – 60).
28. Zubov, D. V. (2017). A software package for modeling a mechatronic manipulator. In Nacional'nyj Superkomp'yuternyj Forum «NSKF-2017» [Nacional'nyj Superkomp'yuternyj Forum "NSKF-2017"] (s. 42-46).
29. Zubov, D. V. (2016). Modern problems of controlling technological manipulators in industry. In Matematicheskie metody v tekhnike i tekhnologiyah. Mashinostroenie [Mathematical methods in engineering and technology. Mechanical Engineering] (s. 233 – 236).
30. Ivanov, Y. V., Blagoveshchenskaya, M. M., & Blagoveshchenskiy, I. G. (2012). Automation of the process of molding candy masses using a digital video camera (CVC) sensor. In Planirovanie i obespechenie podgotovki i perepodgotovki kadrov dlya otraslej pishchevoj promyshlennosti i mediciny [Planning and providing training and retraining of personnel for the food industry and medicine] (s. 215 – 218).
31. Kafarov, V. V., & Makarov, V. V. (1990). Gibkie avtomatizirovannye proizvodstvennye sistemy v himicheskoj promyshlennosti. [Flexible automated manufacturing systems in the chemical industry]. Khimiya.
32. Kafarov, V. V. (1968). Metody kibernetiki v himii i himicheskoj tekhnologii [Cybernetics methods in chemistry and chemical technology]. Khimiya.
33. Khalal, O. (2007). Robust control of manipulator robot by using the variable structure control with sliding mode. International Journal of Computers, Communications and Control, 5, 1–6.
34. Krylova, L. A., Blagoveshchenskiy, V. G., & Tatarinov, A. V. (2017). Development of intelligent hardware and software systems for monitoring the separation of dispersed food masses based on intelligent technologies. In Razvitie pishchevoj i pererabatyvayushchej promyshlennosti Rossii: kadry i nauka [The Development of the Food and Processing Industry of Russia: Personnel and Science] (pp. 199 – 201). Izdatel’skiy kompleks MGUPP.
35. Kucuk, S., & Bingul, Z. (2004). The inverse kinematics solutions of industrial robot manipulators. Proceedings of the IEEE International Conference on Mechatronics, 274 – 279.
36. Makarov I.M. (1986). Robotics and flexible automated production (pp. 320 – 375). Izdatel’stvo Vysshaya shkola [High school publishing house].
37. Nazoykin E.A., Blagoveshchenskiy I.G., Sincha V.M., Zhirov M.V., Mitin V.V. (2019). The use of simulation to identify the state of enterprises in the food industry. In the collection: Intelligent systems and technologies in the food industry industries Conference proceedings (pp. 147 – 155). Izdatel'skiy kompleks MGUPP [Publishing complex MGUPP].
38. Nosenko, S. M., Blagoveshchenskiy, I. G., Shaverin, A. V., & Blagoveshchenskaya, M. M. (2014). Automation of control of taste indicators of chocolate products using intelligent technologies. Konditerskoye i khlebopekarnoye proizvodstvo [Confectionery and bakery production], 10(153), 56 - 59.
39. Petrov, A. Yu., Blagoveshchenskaya, M. M., Blagoveshchenskiy, V. G., Ionov, A. V., & Blagoveshchenskiy, I. G. (2019). The main principles in building a computer vision system in the baking industry. In Intellektual'nye sistemy i tekhnologii v otraslyah pishchevoj promyshlennosti [Intelligent systems and technologies in the food industry] (pp. 121 – 126).
40. Petryakov, A. N., Blagoveshchenskaya, M. M., Blagoveshchenskiy, V. G., Mitin, V. V., Blagoveshchenskiy, I. G. (2019). Improving the quality of identification and positioning of an object in digital stereo images using depth mapping algorithms. In Intellektual'nye sistemy i tekhnologii v otraslyah pishchevoj promyshlennosti [Intelligent systems and technologies in the food industry] (pp. 133 – 138).
41. Raghavan, M., & Roth, B. (1993). Inverse kinematics of the general 6R manipulator and the related linkages. Publishing House Of Mechanical-TRANS, 5, 502–508.
42. Savostin, S. D., Blagoveshchenskaya, M. M., & Blagoveshchenskiy, I. G. (2016). Avtomatizaciya kontrolya pokazatelej kachestva muki v processe razmola s ispol'zovaniem intellektual'nyh tekhnologij [Automation of control of flour quality indicators during grinding using intelligent technologies]. Frantera.
43. Skopintsev, I. V. (2016). Designing a control system for a technological manipulator using LabVIEW and Solid Work packages. In Polimernaya industriya: Innovacii. Effektivnost'. Resursosberezhenie. Mashinostroenie [Polymer industry: Innovation. Efficiency. Resource Saving. Engineering] (pp. 57 – 62).
44. Filaretov, V. F., & Zuev, A. V. (2006). Positionalforce control of the manipulator electric drive. Mekhatronika, avtomatizatsiya, upravleniye [Mechatronics, Automation, Control], 9. 20-24.
45. Shaverin, A. V., Blagoveshchenskaya, M. M., & Blagoveshchenskiy, I. G. (2012). Automation of the control of organoleptic quality indicators of chocolate products. In Planirovanie i obespechenie podgotovki i perepodgotovki kadrov dlya otraslej pishchevoj promyshlennosti i mediciny [Planning and providing training and retraining of personnel for the food industry and medicine] (pp. 209 – 212).
46. Eraki, M. T. H. (2018). A software package for solving the inverse kinematic problem of a robot with three rotational degrees of freedom of the manipulator. Zhurnal «Yestestvennyye i tekhnicheskiye nauki» [The journal «Natural and technical sciences»], 6, 107–120.
47. Eraki, M. T. H., & Zubov, D. V. (2018). Management and research of the dynamics of the robotic arm using LabVIEW and SolidWorks software packages. Zhurnal «Yestestvennyye i tekhnicheskiye nauki» [The journal «Natural and technical sciences»], 4, 177–183.
48. Yurevich, E. I. (2005). Osnovy robototekhniki [Fundamentals of Robotics] (pp. 85 – 126). Izdatel’stvo SpbGPU.
Review
For citations:
Eraki M., Blagoveshchenskiy I.G., Blagoveshchenskiy V.G., Zubov D.V. Quality Control of Bottling and Labelling Food Products with the use of Intelligent Technologies. Health, Food & Biotechnology. 2020;2(1):112-127. (In Russ.) https://doi.org/10.36107/hfb.2020.i1.s295