The Usage of Secondary Raw Materials of the Wine Industry in Biotechnology of Fermentation Beverages
https://doi.org/10.36107/hfb.2021.i2.s103
Abstract
It is proposed to use a liquid extract obtained from "sweet" grape pomace - waste of processing berries into wine materials, in the production technology of fermentation kvass. The objects of the study were: grapes of the ampelographic variety “Pinot Noir”; an extract obtained from dried "sweet" pomace of grapes remaining after the separation of the fermented juice; unfiltered unpasteurized unclarified kvass, obtained according to the classical technology on the concentrate of kvass wort with the addition of an extract from the pomace of grapes. The extract was obtained from grape pomace, pre-dried to a moisture content of 6% and ground to a particle size of 0.05 mm, by water extraction for 1.5 h at a temperature of 77–80 ° C at a hydromodule of 1: 14; the resulting liquid extract contains 2.0-2.2 g / 100 ml of polyphenolic substances. The extract was added to the composition of kvass "before fermentation" (at the stage of preparation of the main wort) and "after fermentation" (at the stage of blending the finished kvass). It was found that the introduction of the extract into the composition of kvass before the main fermentation promotes a better fermentation of dry substances, a higher content of polyphenols in the finished drink and a higher colloidal stability of these drinks. The samples with the addition of 10-15% extract were recognized as the best in terms of tasting qualities. According to the results of the study, the introduction of an extract from grape pomace into the composition of fermentation kvass is recommended at the stage of preparation of the main wort, in a dosage of 10% of the total mass of the main wort. 200-250 ml of kvass with such a dosage of grape pomace extract allows satisfying from 43% to 60% of the average daily requirement for polyphenolic substances.
About the Authors
Elena Yu. YegorovaRussian Federation
Yuri V. Morozhenko
Russian Federation
References
1. Аралина, А. А., и Селимов, М. А. (2014). Анализ и оптимизация технологического процесса извлечения флавоноидов из виноградных выжимок. Пищевая промышленность, (3), 26-28.
2. Борисенко, В. А. (2006). Разработка технологии пива с повышенной коллоидной и вкусовой стабильностью [Кандидатская диссертация, Кемеровский технологический институт пищевой промышленности], Кемерово.
3. Зайцев, Г. П. (2020). Совершенствование технологии производства насыщенной полифенолами биологически активной продукции из винограда красных сортов [Кандидатская диссертация, кубанский государственный технологический университет], Краснодар.
4. Еремеева, Н. Б. (2018). Совершенствование технологии производства экстрактов из плодово-ягодного сырья с антиоксидантным действием и разработка направлений их использования [Кандидатская диссертация, Самарский государственный технический университет], Самара.
5. Ибрагимов, Л. Р., и Магомедов, М. К. (2013). Использование вторичных продуктов переработки виноградно-винодельческой отрасли. Вино и виноград, (9), 24-26.
6. Котик, О. А. (2012). Перспективы использования растительных экстрактов с высокой антиоксидантной активностью в квасах брожения. Известия высших учебных заведений. Пищевая технология, (4), 26-29.
7. Кустова, И. А. (2016). Разработка технологии новых пищевых продуктов с использованием экстрактов из вторичного виноградного сырья: дисс. … канд. техн. наук: 05.18.01. Самара, СамГТУ, 186 с.
8. Пеков, Д. Б. (2009). Разработка и товароведная характеристика функциональных напитков на основе растительного сырья антиоксидантного действия: дисс. … канд. техн. наук: 05.18.15. Кемерово, КемТИПП, 139 с.
9. Свиридов, Д. А. (2017). Разработка технологии использования вторичных ресурсов виноградарско-винодельческой отрасли с целью повышения физиологической ценности пищевых продуктов: дисс. … канд. техн. наук: 05.18.01. Москва, ВНИИ ПБВП, 179 с.
10. Степакова, Н. Н., Резниченко, И. Ю., Киселева, Т. Ф., Шкрабтак, Н. В., Фролова, Н. А., и Праскова, Ю. А. (2020). Растительное сырье Дальневосточного региона как источник биологически активных веществ. Пищевая промышленность, (3), 16-21.
11. Ткаченко, М. Г., Чурсина, О. А., Максимовская, В. А., Вьюгина, М. А., Виноградов, Б. А., Дадашев, М. Н., Лисак, А. В., и Корсак, И. И. (2013). Перспективы использования сверхкритической экстракции для переработки вторичных продуктов виноделия. Магарач. Виноградарство и виноделие, (3), 25-27.
12. Akaberi, M., & Hosseinzadeh, H. (2016). Grapes (Vitis vinifera) as a potential candidate for the therapy of the metabolic syndrome. Phytotherapy Research, 30 (4), 540-556. https://doi.org/10.1002/ptr.5570
13. Ambra, R., Pastore, G., & Lucchetti, S. (2021). The role of bioactive phenolic compounds on the impact of beer on health. Molecules. 26 (2), 486. https://doi.org/10.3390/molecules26020486
14. Antonić, B., Jančíková, S., Dordević, D., & Tremlová, B. (2020). Grape pomace valorization: A systematic review and meta-analysis. Foods, 9 (11), 1627. https://doi.org/10.3390/foods9111627
15. Boussetta, N., Vorobiev, E., Deloison, V., Pochez, F., Falcimaigne-Cordin, A., & Lanoisellé, J.-L. (2011). Valorisation of grape pomace by the extraction of phenolic antioxidants:Application of high voltage electrical discharges. Food Chemistry, 128 (2), 364-370. https://doi.org/10.1016/j.foodchem.2011.03.035
16. Brunner, E. Y., & Mizin, V. I. (2013). Grape polyphenols attenuate psychological stress.
17. In G. Pierce, V. Mizin, & A. Omelchenko (Eds.) Advanced Bioactive Compounds Countering the Effects of Radiological, Chemical and Biological Agents (р. 229-240). NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6513-9_19
18. Capakova, Z., Humpolicek, P., & Mlcek, J. (2018). Effects of polyphenols on cell viability of selected varieties of grapes berries and pomace. Acta Scientiarum Polonorum. Hortorum Cultus, 17 (2), 115-121. https://doi.org/10.24326/asphc.2018.2.10
19. Di Lecce, G., Arranz, S., Jáuregui, O., Tresserra-Rimbau, A., Quifer-Rada, P., & Lamuela-Raventós, R.M. (2014). Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food chemistry, 145С, 874-882. https://doi.org/10.1016/j.foodchem.2013.08.115
20. Fernández-Fernández, A. M., Dellacassa, E., Medrano-Fernandez, A., & del Castillo, M. D. (2021). Potential of red winemaking byproducts as health-promoting food ingredients. In M. M. Cortez Vieira, L. Pastrana, J. Aguilera (Eds.), Sustainable Innovation in Food Product Design (р. 205-248). Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-61817-9_11
21. Ferreira, I. M., & Guido, L. F. (2018). Impact of wort amino acids on beer flavour: A Review. Fermentation, 4 (23). https://doi.org/10.3390/fermentation4020023
22. Ginjom, I., D'Arcy, B., Caffin, N., & Gidley, M. (2011). Phenolic compound profiles in selected queensland red wines at all stages of the wine-making process. Food Chemistry, 125 (3), 823-834. https://doi.org/10.1016/j.foodchem.2013.04.088
23. Giovinazzo, G., & Grieco, F. (2015). Functional properties of grape and wine polyphenols. Plant Foods for Human Nutrition, 70 (4), 454-462. https://doi.org/10.1007/s11130-015-0518-1
24. Hornedo-Ortega, R., González-Centeno, M. R., Chira, K., Jourdes, M., & Teissedre, P.-L. (2020). Phenolic compounds of grapes and wines: key compounds and implications in sensory perception. In Winemaking – Stabilization, Aging Chemistry and Biochemistry (р. 1-26). IntechOpen. https://doi.org/10.5772/intechopen.93127
25. Iuga, M., Batariuc, A., & Mironeasa, S. (2021). Synergistic effects of heat-moisture treatment regime and grape peels addition on wheat dough and pasta features. Applied Sciences, 11 (12), 5403. https://doi.org/10.3390/app11125403
26. Kandylis, P., Dimitrellou, D., & Thomas, M. (2021). Recent applications of grapes and their derivatives in dairy products. Trends in Food Science & Technology, 114, 696-711. https://doi.org/10.1016/j.tifs.2021.05.029
27. Lentz, M. (2018). The impact of simple phenolic compounds on beer aroma and flavor. Fermentation, 4 (20). https://doi.org/10.3390/fermentation4010020
28. Li, S.-H., Zhao, P., Tian, H.-B., Chen, L.-H., & Cui, L.-Q. (2015). Effect of grape polyphenols on blood pressure: A meta-analysis of randomized controlled trials. PLOS ONE, 10 (9), e0137665. https://doi.org/10.1371/journal.pone.0137665
29. Makris, D. P., Boskou, G., & Andrikopoulos, N. K. (2007). Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition Analysis, 20 (2), 125-132. https://doi.org/10.1016/j.jfca.2006.04.010
30. Margaryan, K., Melyan, G., Vardanyan, D., Devejyan, H., & Aroutiounian, R. (2017). Phenolic content and antioxidant activity of Armenian cultivated and wild grapes // BIO Web of Conferences 40th World Congress of Vine and Wine, 9, 02029. https://doi.org/10.1051/bioconf/20170902029
31. Milinčić, D. D., Kostić, A. Ž., Gašić, U. M., Lević, S., Stanojević, S. P., Barać, M. B., Tešić, Ž. L., Nedović, V., & Pešić, M. B. (2021). Skimmed goat’s milk powder enriched with grape pomace seed extract: phenolics and protein characterization and antioxidant properties. Biomolecules, 11 (7), 965. https://doi.org/10.3390/biom11070965
32. Monteiro, G. C., Minatel, I. O., Junior, A. P., Gomez-Gomez, H. A., de Camargo, J. P. C., Diamante, M. S., Pereira Basílio, L. S., Tecchio, M. A., & Pereira Lima, G. P. (2021). Bioactive compounds and antioxidant capacity of grape pomace flours. LWT – Food Science and Technology, 135, 110053. https://doi.org/10.1016/j.lwt.2020.110053
33. Moro, K. I. B., Bender, A. B. B., da Silva, L. P., & Garcia Penna, N. (2021). Green extraction methods and microencapsulation technologies of phenolic compounds from grape pomace: A Review. Food and Bioprocess Technology, 14 (2), 1407-1431. https://doi.org/10.1007/s11947-021-02665-4
34. Musteață, G., Balanuță, A., Reșitca, V., Filimon, R. V., Băetu, M. M., & Patraş, A. (2021). Capitalization of secondary wine products – an opportunity for the wine sector of Republic of Moldova and Romania. Journal of Social Sciences, IV (2), 117-127. https://doi.org/10.52326/jss.utm.2021.4(2).12
35. Mutha, R. E., Tatiya, A. U. & Surana, S. J. (2021). Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Future Journal of Pharmaceutical Sciences, 7, 25. https://doi.org/10.1186/s43094-020-00161-8
36. Neshati, S., Rahmani, F., & Baneh, D. (2014). Phenolic compounds and antioxidant activities of skins and seeds of foreign and Iranian grapes. Journal of Pharmacy and Nutrition Sciences, 4 (1), 60-65. https://doi.org/10.6000/1927-5951.2014.04.01.9
37. Rivas, M. Á., Casquete, R., Córdoba, M. d. G., Ruíz-Moyano, S., Benito, M. J., Pérez-Nevado, F., & Martín, A. (2021). Chemical composition and functional properties of dietary fibre concentrates from winemaking by-products: skins, stems and lees. Foods, 10 (7), 1510. https://doi.org/10.3390/foods10071510
38. Rockenbach, I. I., Gonzaga, L. V., Rizelio, V. M., Gonçalves, A. E., Genovese, M. I., & Fett, R. (2011). Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Research International, 44 (4), 897-901. https://doi.org/10.1016/j.foodres.2011.01.049
39. Samoticha, J., Wojdyło, A., Chmielewska, J., & Oszmiański, J. (2017). The effects of flash release conditions on the phenolic compounds and antioxidant activity of Pinot noir red wine. European Food Research and Technology, 243, 999-1007. https://doi.org/10.1007/s00217-016-2817-7
40. Šibalić, D., Planinić, M., Jurić, A., Bucić-Kojić, A., & Tišma, M. (2021). Analysis of phenolic compounds in beer: from raw materials to the final product. Chemical Papers, 75, 67-76. https://doi.org/10.1007/s11696-020-01276-1
41. Stewart, G.G. (2017). The production of secondary metabolites with flavour potential during brewing and distilling wort fermentations. Fermentation, 3 (63). https://doi.org/10.3390/fermentation3040063
42. Sukmanov, V., Ukrainets, A., Zavyalov, V., & Marynin, A. (2017). Research of extraction of biologically active substances from grape pomace by the subcritical water. Eastern-European Journal of Enterprise Technologies, 5 (89), 70-80. https://doi.org/10.15587/1729-4061.2017.108992
43. Veljovic, M., Despotovic, S., Pecic, S., Davidovic, S., Djordjevic, R., Vukosavljevic, P., & Leskosek-Cukalovic, I. (2012). The influence of raw materials and fermentation conditions on the polyphenol content of grape beer. Conference: 6th Central European Congress on FoodAt: Novi Sad, 1137-1141. https://www.researchgate.net/publication/279481687
44. Vorobiev, E., & Lebovka, N. I. (2020). Grapes and Residues of Wine Industry. In E. Vorobiev, & N. I. Lebovka (Eds.), Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy (p. 299-335). Springer Link. https://doi.org/10.1007/978-3-030-40917-3_11
45. Wang, X., Tong, H., Chen, F., & Gangemi, J. D. (2010). Chemical characterization and antioxidant evaluation of muscadine grape pomace extract. Food Chemistry, 123 (4), 1156-1162. https://doi.org/10.1016/j.foodchem.2010.05.080
46. Xia, E.-Q., Deng, G.-F., Guo, Y.-J., & Li, H.-B. (2010). Biological activities of polyphenols from grapes. International Journal of Molecular Science, 11 (2), 622-646. https://doi.org/10.3390/ijms11020622
47. Yu, J., & Ahmedna, M. (2013). Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science and Technology, 48 (2), 221-237. https://doi.org/10.1111/j.1365-2621.2012.03197.x
48. Zhou, Y., Su, P., Yin, H., Dong, Z., Yang, L., & Yuan, C. (2019). Effects of different harvest times on the maturity of polyphenols in two red wine grape cultivars (Vitis vinifera L.) in Qingtongxia (China). South African Journal of Enology and Viticulture, 40 (2), 1-1. http://dx.doi.org/10.21548/40-2-2770
Review
For citations:
Yegorova E.Yu., Morozhenko Yu.V. The Usage of Secondary Raw Materials of the Wine Industry in Biotechnology of Fermentation Beverages. Health, Food & Biotechnology. 2021;3(2). (In Russ.) https://doi.org/10.36107/hfb.2021.i2.s103