Development of Substance Technology for the Production of Osteoinductive Materials
https://doi.org/10.36107/hfb.2021.i3.s115
Abstract
A technology has been developed for obtaining an osteoplastic material consisting of a powder of natural bone tissue, the preparation contains hydroxyapatite and tricalcium phosphate compounds, as well as a complex of minerals. One of the most urgent problems of traumatology and orthopedics, surgical dentistry and maxillofacial surgery is the problem of treating patients with large bone defects. A distinctive feature of such defects is the insufficient severity of the natural regenerative processes of bone tissue. Thus, the development of a technology for obtaining bone blocks for further use as a fully bioinert and biocompatible osteoinductive material on the world market that is fully bioinert and biocompatible with body tissues for plastic compensation of bone defects of the jaw bones is relevant. The resulting material was a complex structured system consisting of specially treated bone tissue obtained from slaughter animals (bulls up to 12-18 months of age), containing bioavailable silicon and a number of biologically active compounds that stimulate reparative processes in bone tissue. An optimal technological scheme for obtaining an osteinductive material has been developed. The composition and main stages of the developed technology have been optimized. Bone material accumulated using the developed technology was used in further research on the development of complex dosage forms that have an osteoinductive effect.
About the Authors
Dmitry V. KompantsevRussian Federation
Yana A. Ivanitskaya
Russian Federation
References
1. Борисенко, А. В., Кодлубовский, Ю. Ю., & Вит, В. В. (2017). Гистологическое исследование регенерации костной ткани нижней челюсти при воздействии трикальций фосфата и гиалуроновой кислоты. Вестник Стоматологии, 1(90), 6-10.
2. Бычков, А. И., Долинер, М. Э., & Ситдикова, А. И. (2018). Изучение остеоиндуктивной активности рекомбинантного морфогенетического белка кости (rhbmp-2) в составе остеопластического материала на основе деминерализованного матрикса в эксперименте. Врач-аспирант, 59(4.2), 290-299.
3. Ешиев, А. М., & Ешиев, Д. А. (2016). Влияние на репаративную регенерацию костной ткани челюстей остеорегенераторных материалов, синего света и электровибромассажа. Фундаментальные исследования, 2(ч.1), 61-64.
4. Опанасюк, И. В., & Опанасюк, Ю. В. (2017). Костнопластические материалы в современной стоматологии. Алло-пластические материалы. Современная стоматология, 3,101-105.
5. Павленко, А. В., Горбань, С. А., Илык, Р. Р., & Штеренберг А. (2018). Остеопластические материалы в стоматологии: прошлое, настоящее, будущее. Современная стоматология, 4, 103-109.
6. Скулан А., & Йенсен С. (2005). Биоматериалы для реконструктивного лечения внутрикостных пародонтальных дефектов. Костные материалы и заменители кости, 1, 21-31.
7. Kompantsev, D., Chahirova, A., Yusupov, R., & Shabanova, N. (2020). Creating osteoplastic materials to repair jaw bones defects. Archiv euromedica,10(4), 163-166.
8. Livada, R., Fine, N., & Shiloah, J. (2017). Root amputation: a new look into an old procedure. New York State Dental Journal ,80(4), 24.
9. Zhang, W., Zhang, Z., Chen, S., Macri, L., Kohn, J., & Yelick, P. C. (2016). Mandibular jaw bone regeneration using human dental cell-seeded tyrosine-derived polycarbonate scaffolds. Tissue engineering. Part A, 22(13-14), 985–993. https://doi.org/10.1089/ten.TEA.2016.0166
Review
For citations:
Kompantsev D.V., Ivanitskaya Ya.A. Development of Substance Technology for the Production of Osteoinductive Materials. Health, Food & Biotechnology. 2021;3(3). (In Russ.) https://doi.org/10.36107/hfb.2021.i3.s115