Preview

Health, Food & Biotechnology

Advanced search

X-ray Diffraction for Detecting Starch Adulteration and Measuring the Crystallinity Indices of the Polymorphic Modifications of Starch

https://doi.org/10.36107/hfb.2022.i1.s131

Abstract

Introduction: Starch is widely used in the food industry and biotechnology, including for manufacturing food packaging materials. Native starches from various sources exist in the form of three polymorphic modifications (A-, B- and C-types) differing in their crystal structure, which has an indirect effect on their physicochemical and technological properties.

Purpose: To properly and efficiently use starch as a raw material for biotechnology, one needs to preliminarily identify its polymorphic modification and crystallinity, as well as detect and discard adulterants or substandard raw materials. X-ray diffraction is suggested to be a rapid and accurate method for solving the outlined problems.

Methods: In this study, properties of commercial starch from various plant sources (corn, rice, wheat, potatoes, peas, and tapioca) were analyzed by X-ray diffraction and scanning electron microscopy.

Results and conclusion: Starch of some brands was shown to be adulterated: the more expensive potato starch was replaced with cheaper corn starch. The crystallinity indices were determined for all the selected samples; the crystal structure of corn starch was found to be most highly ordered. Contrariwise, the C-type pea starch was characterized by the lowest degree of crystal structure ordering. The findings obtained in this study show that it is necessary to preliminarily determine the source of starch in order to identify its polymorphic modification, as well as physical and chemical properties by X-ray diffraction. This information will be demanded for developing the new types of functional foods and reproducing the currently used biotechnologies.

About the Authors

Ekaterina M. Podgorbunskikh
Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Russian Federation

Cand. Chem. Sci.



Karina V. Dome
Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Russian Federation


Vladimir Bukhtoyarov
Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Russian Federation


Aleksey L. Bychkov
Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Russian Federation

Dr. Chem. Sci.



References

1. Agarwal, S., Singhal, S., Godiya, C. B., Kumar, S. (2021). International Journal of Environmental Analytical Chemistry, 1963717. https://doi.org/10.1080/03067319.2021.1963717

2. Alay, S. C. A., & Meireles, M. A. A. (2015). Food Science and Technology (Campinas), 35, 215-236. https://doi.org/10.1590/1678-457X.6749

3. Bajer, D., Kaczmarek, H., & Bajer, K. (2013). Carbohydrate Polymers, 98, 477-482. https://doi.org/10.1016/j.carbpol.2013.05.090

4. Ballesteros-Martinez, L., Perez-Cervera, C., & Andrade-Pizzaro, R. (2020). NFS Journal, 20, 1-9. https://doi.org/10.1016/j.nfs.2020.06.002

5. Chavez-Salazar, A., Bello-Perez, L. A., Agama, E., Castellanos-Galeano, F. J., & Alvarez-Barreto, C. I. (2017). International Journal of Biological Macromolecules, 98, 240-246. https://doi.org/10.1016/j.ijbiomac.2017.01.024

6. Chevigny, C., Foucat, L., Rolland-Sabate, A., Buleon, A., & Lourdin D. (2016). Carbohydrate Polymers, 146, 411-419. https://doi.org/10.1016/j.carbpol.2016.03.065

7. Dome, K., Podgorbunskikh, E., Bychkov, A., & Lomovsky, O. (2020). Polymers, 12, 641. https://doi.org/10.3390/polym12030641

8. Dome, K., Podgorbunskikh, E., Bychkov, A., & Lomovsky, O. (2022). AIP Conference Proceedings, 2390(1), # 030013. https://doi.org/10.1063/5.0069197

9. Espino-Pérez, E., Gilbert, R.G., Domenek, S., Brochier-Salon, M.C., Belgacem, M.N., & Bras, J. (2016). Carbohydrate Polymers, 135, 256-266. https://doi.org/10.1016/j.carbpol.2015.09.005

10. Ferreira, A. R. V., Alves, V. D., & Colehoso, I. M. (2016). Membranes, 6, 1-17. https://doi.org/10.3390/membranes6020022

11. Firdaus, J., Sulistyani, E., & Subagio, A. (2018). Asian Journal of Clinical Nutrition, 10, 32-36. https://doi.org/10.3923/ajcn.2018.32.36

12. Frost, K., Kaminski, D., Kirwan, G., Lascaris, E., & Shanks, R. (2009). Carbohydrate Polymers, 78, 543-548. https://doi.org/10.1016/j.carbpol.2009.05.018

13. Garcia, N. L., Ribba, L., Dufresne, A., Aranguren, M. I., & Goyanes, S. (2009). Macromolecular Materials and Engineering, 294, 169-177. https://doi.org/10.1002/mame.200800271

14. Ghosal, G., & Kaushal, K. (2019). Legume Science, 2, 17. https://doi.org/10.1002/leg3.17

15. Jadhav, H., Jadhav, A., Takkalkar, P., Hossain, N., Nizammudin, S., Zahoor, M., Jamal, M., Mubarak, N. M., Griffin, G., & Kao, N. (2020). Journal of Polymer Research, 27, 330. https://doi.org/10.1007/s10965-020-02287-y

16. Jiang, F., Du, C., Jiang, W., Wang, L., & Du, S. (2020). International Journal of Biological Macromolecules, 150, 1155-1161. https://doi.org/10.1016/j.ijbiomac.2019.10.124

17. Katsumi, N., Okazaki, M., Yonebayashi, K., Kawashima, F., Nishiyama, S., & Nishi, T. (2015). Sago Palm, 22, 25–30. https://doi.org/10.12691/jfnr-8-11-4

18. Kim, H. R., Choi, S. J., Choi, H., Park, C., & Moon, T. W. (2020). Food chemistry, 318, 126490. https://doi.org/10.1016/j.foodchem.2020.126490

19. Lemos, P. V. F., Barbosa, L. S., Ramos, I. G., Coelho, R. E., & Druzian J. I. (2018). Journal of Thermal Analysis and Calorimetry, 131, 2555–2567. https://doi.org/10.1007/s10973-017-6834-y

20. Li, C., Sheng, L., Sun, G., & Wang, L. (2020). Lwt - Food Science and Technology, 131, 109791. https://doi.org/10.1016/j.lwt.2020.109791

21. Litvyak, V., Sysa, A., Batyan, A., & Kravchenko, V. (2019). Ukrainian Food Journal, 8, 597-619. https://doi.org/10.24263/2304-974X-2019-8-3-15

22. Lorente-Ayza, S. M. M. M., Orts, M. J., & Pérez-Herranz, V. (2015). Journal of the European Ceramic Society, 35, 2333–2341. https://doi.org/10.1016/j.jeurceramsoc.2015.02.026

23. Luchese, C. I., Spada, J. C., & Tessaro, I. C. (2017). Industrial Crops and Products, 109, 619-626. https://doi.org/10.1016/j.indcrop.2017.09.020

24. Munoz, L. A., Pedreschi, F., Leiva, A., & Aguilera, J. M. (2015). Journal of Food Engineering, 152, 65-71. https://doi.org/10.1016/j.jfoodeng.2014.11.017

25. Nara, S., Mori, A., & Komiya, T. (1978). Starch, 4, 111-114. https://doi.org/10.1002/star.19780300403

26. Pogorelov, A. G., Kuznetsov, A. L., Pogorelova, V. N., Suvorov, O. A., Panait, A. I., & Pogorelova M. A. (2019). Biophysics, 64, 583-587. https://doi.org/10.1134/S000635091904016X

27. Pozo, C., Rodriguez-Llamazares, S., Bouza, R., Barral, L., Castano, J., Muller, N., & Restrepo, I. (2018). Journal of Polymer Research, 25, 266. https://doi.org/10.1007/s10965-018-1651-y

28. Purohit, S., Jayachandran, L. E., Raj, A. S., Nayak, D., & Rao, P. S. (2019). X-ray-diffraction for food quality evaluation, In J. Zhong, X. Wang (Eds.), Evaluation Technologies for Food Quality, 1st ed. (914 p.); Publisher: Woodhead Publishing, China, 2019.

29. Sarko, A., & Wu, C. H. (1978). Starch, 30, 73-78. https://doi.org/10.1002/star.19780300302

30. Rastogi, H., & Bhatia, S. (2019). Future prospectives for enzyme technologies in the food industry. In M. Kuddus (Ed.), Enzymes in food biotechnology. Academic Press.

31. Rodrigues, S. C. S., da Silva, A. S., de Carvalho, L. H., Alves, T. S., & Barbosa, R. (2020). Journal of Materials Research and Technology, 9, 15670-15678. https://doi.org/10.1016/j.jmrt.2020.11.030

32. Shi, M., Jing, Y., Yang, L., Huang, X., Wang, H., Yan, Y., & Liu, Y. (2019). Polymers, 11, 1523. https://doi.org/10.3390/polym11091523

33. Shusaku, N., Horiuchi, S., Ikehata, A., & Ogawa, Y. (2021). Carbohydrate Polymers, 262, 117928. https://doi.org/10.1016/j.carbpol.2021.117928

34. Singh, V., Ali, S. Z., Somashekar, R. & Mukherjee, P. S. (2006). International Journal of Food Properties, 9, 845-854. https://doi.org/10.1080/10942910600698922

35. Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). International Journal of Biological Macromolecules, 132, 1079-1089. https://doi.org/10.1016/j.ijbiomac.2019.03.190

36. Vamadevan, V., & Bertfort, E. (2020). Food Hydrocolloids, 103, 105663. https://doi.org/10.1016/j.foodhyd.2020.105663

37. Zhang, D., Chen, L., Dong, Q., Din, Z., Hu, Z., Wang, G., Ding, W., He, J., & Cheng, S. (2021). Food Chemistry, 360, 129922. https://doi.org/10.1016/j.foodchem.2021.129922.

38. Zhu, X., He, Q., Hu, Y., Huang, R., Shao, N., & Gao, Y. (2018). Journal of Thermal Analysis and Calorimetry, 132, 927-935. https://doi.org/10.1007/s10973-018-7030-4

39. Zobel, H. F. (1988). Starch, 40. 1-7. https://doi.org/10.1002/star.19880400102

40. Żołek-Tryznowska, Z., & Holica, J. (2020). Journal of Cleaner Production, 276, 124265. https://doi.org/10.1016/j.jclepro.2020.124265


Supplementary files

Review

For citations:


Podgorbunskikh E.M., Dome K.V., Bukhtoyarov V., Bychkov A.L. X-ray Diffraction for Detecting Starch Adulteration and Measuring the Crystallinity Indices of the Polymorphic Modifications of Starch. Health, Food & Biotechnology. 2022;4(1). https://doi.org/10.36107/hfb.2022.i1.s131

Views: 1096


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)