Влияние незаменимых аминокислот на синтез полипротеинов вируса SARS-CoV-2 в патогенезе COVID-19
https://doi.org/10.36107/hfb.2023.i1.s162
Аннотация
Введение. Диета является решающим фактором в развитии вирусного патогенеза. Предварительно было показано, что высокое потребление животных белков напрямую коррелирует с опасными исходами инфекции SARS-CoV-2. Анализ биохимии метаболических отношений хозяина и возбудителя необходим для выяснения роли животных белков в развитии COVID-19.
Цель. Выявить диетический фактор, влияющий критически на развитие заболевания COVID-19. Сравнить аминокислотный состав животных и растительных белков с неструктурными полипротеинами вируса SARS-CoV-2. Проанализировать влияние незаменимых аминокислот (ЕАА) на развитие инфекционного заболевания COVID-19.
Материалы и методы. Научные данные и информация, необходимые для этого анализа, были найдены в публикациях и СМИ, доступных в Интернете, а также взяты из статистических баз данных, с использованием необходимых ключевых слов для одного тега или в различных их сочетаниях. Статистические выборки формировались из источников и фактов, доступных в Интернете. Аминокислотные последовательности белков были получены из баз данных (https://www.ncbi.nlm.nih.gov/, https://www.uniprot.org/uniprot/). Для выявления статистической взаимосвязи применялся коэффициент корреляции Пирсона (r).
Результаты и обсуждение. Анализ статистических данных и оценка факторов питания в период развития 22-месячной пандемии в 20 странах, с наибольшим числом инфицированных пациентов, показали, что исход заболевания COVID-19 усугублялся избыточным потреблением белков животного происхождения. Количество зарегистрированных случаев заражения вирусом SARS-CoV-2 (RPr) и смертей (IFR) от болезни COVID-19 на тысячу жителей было значительно ниже в регионах, где потреблялась преимущественно растительная пища с минимальным содержанием EAA. Выявлена положительная связь между патогенностью SARS-CoV-2 и количеством поступающих в организм животных белков с коэффициентами корреляции r = 0,83 для RPr и r = 0,61 для IFR. Коронавирусы человека содержат гораздо больше ЕАА, чем клеточные организмы. Съедобные растительные белки содержат в 2-3 раза меньше лейцина, лизина и особенно треонина и валина (LKTV), чем полипептиды SARS-CoV-2. Для оптимального синтеза полипротеинов Pp1a и Pp1ab вируса SARS-CoV-2 требуется своевременное поступление большого количества этих четырех EAA.
Выводы. Лимит ЕАА в пище может быть конкурентным метаболическим фактором, снижающим или подавляющим скорость внутриклеточного синтеза неструктурных полипротеинов вирионов SARS-CoV-2. Дефицит ЕАА, особенно свободного валина и треонина, может подавлять раннюю трансляцию белков Рр1а и Рр1аb вируса SARS-CoV-2. Предполагается, что диета с низким содержанием EAA и особенно LKTV может предотвратить быструю, высокопродуктивную репликацию вируса и патогенное развитие COVID-19.
Список литературы
1. Abdelrahman, Z., Li, M., & Wang, X. (2020). Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Frontiers in Immunology, 11, 552909. https://doi.org/10.3389/fimmu.2020.552909
2. Allard, L., Ouedraogo, E., Molleville, J., Bihan, H., Giroux-Leprieur, B., Sutton, A., Baudry, C., Josse, C., Didier, M., Deutsch, D., Bouchaud, O., & Cosson, E. (2020). Malnutrition: Percentage and Association with Prognosis in Patients Hospitalized for Coronavirus Disease 2019. Nutrients, 12(12), 3679. https://doi.org/10.3390/nu12123679
3. Aller, S., Scott, A., Sarkar-Tyson, M., & Soyer, O. S. (2018). Integrated human-virus metabolic stoichiometric modelling predicts host-based antiviral targets against Chikungunya, Dengue and Zika viruses. Journal of the Royal Society, Interface, 15(146), 20180125. https://doi.org/10.1098/rsif.2018.0125
4. Atila, A., Alay, H., Yaman, M. E., Akman, T. C., Cadirci, E., Bayrak, B., Celik, S., Atila, N. E., Yaganoglu, A. M., Kadioglu, Y., Halıcı, Z., Parlak, E., & Bayraktutan, Z. (2021). The serum amino acid profile in COVID-19. Amino Acids, 53(10), 1569–1588. https://doi.org/10.1007/s00726-021-03081-w
5. Banerjee, A. K., Blanco, M. R., Bruce, E. A., Honson, D. D., Chen, L. M., Chow, A., Bhat, P., Ollikainen, N., Quinodoz, S. A., Loney, C., Thai, J., Miller, Z. D., Lin, A. E., Schmidt, M. M., Stewart, D. G., Goldfarb, D., De Lorenzo, G., Rihn, S. J., Voorhees, R. M., Botten, J. W., … Guttman, M. (2020). SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses. Cell, 183(5), 1325–1339.e21. https://doi.org/10.1016/j.cell.2020.10.004
6. Bar-On, Y. M., Flamholz, A., Phillips, R., & Milo, R. (2020). SARS-CoV-2 (COVID-19) by the numbers. eLife, 9, e57309. https://doi.org/10.7554/eLife.57309
7. Bedock, D., Couffignal, J., Bel Lassen, P., Soares, L., Mathian, A., Fadlallah, J. P., Amoura, Z., Oppert, J. M., & Faucher, P. (2021). Evolution of Nutritional Status after Early Nutritional Management in COVID-19 Hospitalized Patients. Nutrients, 13(7), 2276. https://doi.org/10.3390/nu13072276
8. Bergström, J., Fürst, P., Norée, L. O., & Vinnars, E. (1974). Intracellular free amino acid concentration in human muscle tissue. Journal of Applied Physiology, 36(6), 693–697. https://doi.org/10.1152/jappl.1974.36.6.693
9. Bhatt, P. R., Scaiola, A., Loughran, G., Leibundgut, M., Kratzel, A., Meurs, R., Dreos, R., O'Connor, K. M., McMillan, A., Bode, J. W., Thiel, V., Gatfield, D., Atkins, J. F., & Ban, N. (2021). Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science (New York, N.Y.), 372(6548), 1306–1313. https://doi.org/10.1126/science.abf3546
10. Billinger, E., Zuo, S., & Johansson, G. (2019). Characterization of Serine Protease Inhibitor from Solanum tuberosum Conjugated to Soluble Dextran and Particle Carriers. ACS Omega, 4(19), 18456–18464. https://doi.org/10.1021/acsomega.9b02815
11. Bohé, J., Low, A., Wolfe, R. R., & Rennie, M. J. (2003). Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. The Journal of Physiology, 552(Pt 1), 315–324. https://doi.org/10.1113/jphysiol.2003.050674
12. Bojkova, D., Klann, K., Koch, B., Widera, M., Krause, D., Ciesek, S., Cinatl, J., & Münch, C. (2020). Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature, 583(7816), 469–472. https://doi.org/10.1038/s41586-020-2332-7
13. Bröer, S., & Bröer, A. (2017). Amino acid homeostasis and signalling in mammalian cells and organisms. The Biochemical Journal, 474(12), 1935–1963. https://doi.org/10.1042/BCJ20160822
14. Cantwell, A. M., Singh, H., Platt, M., Yu, Y., Lin, Y. H., Ikeno, Y., Hubbard, G., Xiang, Y., Gonzalez-Juarbe, N., & Dube, P. H. (2021). Kinetic Multi-omic Analysis of Responses to SARS-CoV-2 Infection in a Model of Severe COVID-19. Journal of Virology, 95(20), e0101021. https://doi.org/10.1128/JVI.01010-21
15. CDC. Centers for Disease Control and Prevention. (2022). COVID-19.Cases & data [Data set]. https://www.cdc.gov/coronavirus/2019-ncov/
16. Cheemarla, N. R., Watkins, T. A., Mihaylova, V. T., Wang, B., Zhao, D., Wang, G., Landry, M. L., & Foxman, E. F. (2021). Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics. The Journal of Experimental Medicine, 218(8), e20210583. https://doi.org/10.1084/jem.20210583
17. Clemente-Suárez, V. J., Ramos-Campo, D. J., Mielgo-Ayuso, J., Dalamitros, A. A., Nikolaidis, P. A., Hormeño-Holgado, A., & Tornero-Aguilera, J. F. (2021). Nutrition in the Actual COVID-19 Pandemic. A Narrative Review. Nutrients, 13(6), 1924. https://doi.org/10.3390/nu13061924
18. Delattre, H., Sasidharan, K., & Soyer, O. S. (2020). Inhibiting the reproduction of SARS-CoV-2 through perturbations in human lung cell metabolic network. Life Science Alliance, 4(1), e202000869. https://doi.org/10.26508/lsa.202000869
19. Fehrenbach, H. (2001). Alveolar epithelial type II cell: defender of the alveolus revisited. Respiratory Research, 2, 33. https://doi.org/10.1186/rr36
20. Finkel, Y., Gluck, A., Nachshon, A., Winkler, R., Fisher, T., Rozman, B., Mizrahi, O., Lubelsky, Y., Zuckerman, B., Slobodin, B., Yahalom-Ronen, Y., Tamir, H., Ulitsky, I., Israely, T., Paran, N., Schwartz, M., & Stern-Ginossar, N. (2021). SARS-CoV-2 uses a multipronged strategy to impede host protein synthesis. Nature, 594(7862), 240–245. https://doi.org/10.1038/s41586-021-03610-3
21. Gardner, C. D., Hartle, J. C., Garrett, R. D., Offringa, L. C., & Wasserman, A. S. (2019). Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States. Nutrition Reviews, 77(4), 197–215. https://doi.org/10.1093/nutrit/nuy073
22. Gorissen, S. H. M., Crombag, J. J. R., Senden, J. M. G., Waterval, W. A. H., Bierau, J., Verdijk, L. B., & van Loon, L. J. C. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino acids, 50(12), 1685–1695. https://doi.org/10.1007/s00726-018-2640-5
23. Groen, B. B., Horstman, A. M., Hamer, H. M., de Haan, M., van Kranenburg, J., Bierau, J., Poeze, M., Wodzig, W. K., Rasmussen, B. B., & van Loon, L. J. (2015). Post-Prandial Protein Handling: You Are What You Just Ate. PloS one, 10(11), e0141582. https://doi.org/10.1371/journal.pone.0141582
24. He, X., Hong, W., Pan, X., Lu, G., & Wei, X. (2021). SARS-CoV-2 Omicron variant: Characteristics and prevention. MedComm, 2(4), 838–845. https://doi.org/10.1002/mco2.110
25. Hoffmann, E. K., & Lambert, I. H. (1983). Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells. The Journal of Physiology, 338, 613–625. https://doi.org/10.1113/jphysiol.1983.sp014692
26. Holeček M. (2021). The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases. Physiological Research, 70(3), 293–305. https://doi.org/10.33549/physiolres.934648
27. Horstman, A. M. H., Ganzevles, R. A., Kudla, U., Kardinaal, A. F. M.. van den Borne, J. J. G. C., & Huppertz, T. (2021). Postprandial blood amino acid concentrations in older adults after consumption of dairy products: The role of the dairy matrix. International Dairy Journal, 113. https://doi.org/10.1016/j.idairyj.2020.104890
28. Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nature reviews. Microbiology, 19(3), 141–154. https://doi.org/10.1038/s41579-020-00459-7
29. James, P. T., Ali, Z., Armitage, A. E., Bonell, A., Cerami, C., Drakesmith, H., Jobe, M., Jones, K. S., Liew, Z., Moore, S. E., Morales-Berstein, F., Nabwera, H. M., Nadjm, B., Pasricha, S. R., Scheelbeek, P., Silver, M. J., Teh, M. R., & Prentice, A. M. (2021). The Role of Nutrition in COVID-19 Susceptibility and Severity of Disease: A Systematic Review. The Journal of Nutrition, 151(7), 1854–1878. https://doi.org/10.1093/jn/nxab059
30. Joint WHO/FAO/UNU Expert Consultation (2007). Protein and amino acid requirements in human nutrition. World Health Organization technical report series, (935).
31. Kang J. S. (2020). Dietary restriction of amino acids for Cancer therapy. Nutrition & Metabolism, 17, 20. https://doi.org/10.1186/s12986-020-00439-x
32. Kim, H., Rebholz, C. M., Hegde, S., LaFiura, С., Raghavan, M., Lloyd, J. F., Cheng, S., & Seidelmann, S. B. (2021). Plant-based diets, pescatarian diets and COVID-19 severity: a population-based case–control study in six countries. BMJ Nutrition, Prevention & Health. https://doi.org/10.1136/bmjnph-2021-000272
33. Komarnytsky, S., Cook, A., & Raskin, I. (2011). Potato protease inhibitors inhibit food intake and increase circulating cholecystokinin levels by a trypsin-dependent mechanism. International Journal of Obesity (2005), 35(2), 236–243. https://doi.org/10.1038/ijo.2010.192
34. Knudsen, L., & Ochs, M. (2018). The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochemistry and cell biology, 150(6), 661–676. https://doi.org/10.1007/s00418-018-1747-9
35. Lapointe, C. P., Grosely, R., Johnson, A. G., Wang, J., Fernández, I. S., & Puglisi, J. D. (2021). Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proceedings of the National Academy of Sciences of the United States of America, 118(6), e2017715118. https://doi.org/10.1073/pnas.2017715118
36. Mason, R. J. (2006). Biology of alveolar type II cells. Respirology, (11), S12–S15 https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1440-1843.2006.00800.x
37. Mariotti, F., & Gardner, C. D. (2019). Dietary Protein and Amino Acids in Vegetarian Diets-A Review. Nutrients, 11(11), 2661. https://doi.org/10.3390/nu11112661
38. Mazor, K. M., Dong, L., Mao, Y., Swanda, R. V., Qian, S. B., & Stipanuk, M. H. (2018). Effects of single amino acid deficiency on mRNA translation are markedly different for methionine versus leucine. Scientific Reports, 8(1), 8076. https://doi.org/10.1038/s41598-018-26254-2
39. Mechanick, J. I., Carbone, S., Dickerson, R. N., Hernandez, B. J. D., Hurt, R. T., Irving, S. Y., Li, D. Y., McCarthy, M. S., Mogensen, K. M., Gautier, J. B. O., Patel, J. J., Prewitt, T. E., Rosenthal, M., Warren, M., Winkler, M. F., McKeever, L., & ASPEN COVID-19 Task Force on Nutrition Research (2021). Clinical Nutrition Research and the COVID-19 Pandemic: A Scoping Review of the ASPEN COVID-19 Task Force on Nutrition Research. JPEN. Journal of Parenteral and Enteral Nutrition, 45(1), 13–31. https://doi.org/10.1002/jpen.2036
40. Mei, M., & Tan, X. (2021). Current Strategies of Antiviral Drug Discovery for COVID-19. Frontiers in Molecular Biosciences, 8, 671263. https://doi.org/10.3389/fmolb.2021.671263
41. Mentella, M. C., Scaldaferri, F., Gasbarrini, A., & Miggiano, G. A. D. (2021). The role of nutrition in the COVID-19 pandemic. Nutrients, 13(4), 1093. https://doi.org/10.3390/nu13041093
42. Morais, A. H. A., Aquino, J. S., da Silva-Maia, J. K., Vale, S. H. L., Maciel, B. L. L., & Passos, T. S. (2021). Nutritional status, diet and viral respiratory infections: perspectives for severe acute respiratory syndrome coronavirus 2. The British Journal of Nutrition, 125(8), 851–862. https://doi.org/10.1017/S0007114520003311
43. Mortaz, E., Bezemer, G., Alipoor, S. D., Varahram, M., Mumby, S., Folkerts, G., Garssen, J., & Adcock, I. M. (2021). Nutritional impact and its potential consequences on COVID-19 severity. Frontiers in Nutrition, 8, 698617. https://doi.org/10.3389/fnut.2021.698617
44. Mussap, M., & Fanos, V. (2021). Could metabolomics drive the fate of COVID-19 pandemic? A narrative review on lights and shadows. Clinical Chemistry and Laboratory Medicine, 59(12), 1891–1905. https://doi.org/10.1515/cclm-2021-0414
45. NCBI. (2022). National Center for Biotechnology Information [Data set] https://www.ncbi.nlm.nih.gov/
46. New Food Balances. (2021). FAOSTAT. Food and agriculture data [Data set]. https://www.fao.org/faostat/en/#home
47. Our World in Data. (2022). Research and data to make progress against the world’s largest problems [Data set]. https://ourworldindata.org
48. Páez-Franco, J. C., Torres-Ruiz, J., Sosa-Hernández, V. A., Cervantes-Díaz, R., Romero-Ramírez, S., Pérez-Fragoso, A., Meza-Sánchez, D. E., Germán-Acacio, J. M., Maravillas-Montero, J. L., Mejía-Domínguez, N. R., Ponce-de-León, A., Ulloa-Aguirre, A., Gómez-Martín, D., & Llorente, L. (2021). Metabolomics analysis reveals a modified amino acid metabolism that correlates with altered oxygen homeostasis in COVID-19 patients. Scientific Reports, 11(1), 6350. https://doi.org/10.1038/s41598-021-85788-0
49. Paul, C., Leser, S., & Oesser, S. (2019). Significant amounts of functional collagen peptides can be incorporated in the diet while maintaining indispensable amino acid balance. Nutrients, 11(5), 1079. https://doi.org/10.3390/nu11051079
50. Ponomarenko, S. V. (2022). Dietary factors influencing the COVID-19 epidemic process. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology, 15(4), 463–471. https://doi.org/10.17749/2070-4909/farmakoekonomika.2022.135
51. Ponomarenko, S. V. (2023). Statistical analysis of critical socioeconomic factors in the development of COVID-19 disease. Voprosy statistiki, 30(1), 90-100. https://doi.org/10.34023/2313-6383-2023-30-1-90-100
52. Purpura M., Lowery R. P., Joy J. M., De Souza, E. O., Kalman, D. S., Jäger, R. & Wilson, J. M. (2014). A comparison of blood amino acid concentrations following ingestion of rice and whey protein isolate: A double-blind crossover study. Journal of Nutrition and Health Sciences, 1(3), 306.
53. Pyke, A. T., Nair, N., van den Hurk, A. F., Burtonclay, P., Nguyen, S., Barcelon, J., Kistler, C., Schlebusch, S., McMahon, J., & Moore, F. (2021). Replication kinetics of B.1.351 and B.1.1.7 SARS-CoV-2 variants of concern including assessment of a B.1.1.7 mutant carrying a defective ORF7a gene. Viruses, 13(6), 1087. https://doi.org/10.3390/v13061087
54. Rees, C. A., Rostad, C. A., Mantus, G., Anderson, E. J., Chahroudi, A., Jaggi, P., Wrammert, J., Ochoa, J. B., Ochoa, A., Basu, R. K., Heilman, S., Harris, F., Lapp, S. A., Hussaini, L., Vos, M. B., Brown, L. A., & Morris, C. R. (2021). Altered amino acid profile in patients with SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 118(25), e2101708118. https://doi.org/10.1073/pnas.2101708118
55. Ren, W., Rajendran, R., Zhao, Y., Tan, B., Wu, G., Bazer, F. W., Zhu, G., Peng, Y., Huang, X., Deng, J., & Yin, Y. (2018). Amino acids as mediators of metabolic cross talk between host and pathogen. Frontiers in Immunology, 9, 319. https://doi.org/10.3389/fimmu.2018.00319
56. Renz, A., Widerspick, L., & Dräger, A. (2020). FBA reveals guanylate kinase as a potential target for antiviral therapies against SARS-CoV-2. Bioinformatics (Oxford, England), 36(Suppl 2), i813–i821. https://doi.org/10.1093/bioinformatics/btaa813
57. Renz, A., Widerspick, L., & Dräger, A. (2021). Genome-scale metabolic model of infection with SARS-CoV-2 mutants confirms guanylate kinase as robust potential antiviral target. Genes, 12(6), 796. https://doi.org/10.3390/genes12060796
58. Sans, M. D., Crozier, S. J., Vogel, N. L., D'Alecy, L. G., & Williams, J. A. (2021). Dietary protein and amino acid deficiency inhibit pancreatic digestive enzyme mRNA translation by multiple mechanisms. Cellular and Molecular Gastroenterology And Hepatology, 11(1), 99–115. https://doi.org/10.1016/j.jcmgh.2020.07.008
59. Schmidt, J. A., Rinaldi, S., Scalbert, A., Ferrari, P., Achaintre, D., Gunter, M. J., Appleby, P. N., Key, T. J., & Travis, R. C. (2016). Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. European Journal of Clinical Nutrition, 70(3), 306–312. https://doi.org/10.1038/ejcn.2015.144
60. Shi, D., Yan, R., Lv, L., Jiang, H., Lu, Y., Sheng, J., Xie, J., Wu, W., Xia, J., Xu, K., Gu, S., Chen, Y., Huang, C., Guo, J., Du, Y., & Li, L. (2021). The serum metabolome of COVID-19 patients is distinctive and predictive. Metabolism: Clinical and Experimental, 118, 154739. https://doi.org/10.1016/j.metabol.2021.154739
61. Sloun, B. V., Goossens, G. H., Erdos, B., Lenz, M., Riel, N. V., & Arts, I. C. W. (2020). The impact of amino acids on postprandial glucose and insulin kinetics in humans: A quantitative overview. Nutrients, 12(10), 3211. https://doi.org/10.3390/nu12103211
62. Srikanth, S., & Chen, Z. (2016). Plant protease inhibitors in therapeutics-focus on cancer therapy. Frontiers in pharmacology, 7, 470. https://doi.org/10.3389/fphar.2016.00470
63. To, K. K., Sridhar, S., Chiu, K. H., Hung, D. L., Li, X., Hung, I. F., Tam, A. R., Chung, T. W., Chan, J. F., Zhang, A. J., Cheng, V. C., & Yuen, K. Y. (2021). Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerging Microbes & Infections, 10(1), 507–535. https://doi.org/10.1080/22221751.2021.1898291
64. Trommelen J., Tome D., & van Loon L. C. (2021). Gut amino acid absorption in humans: Concepts and relevance for postprandial metabolism. Clinical Nutrition Open Science, 36, 43e55 https://doi.org/10.1016/j.nutos.2020.12.006
65. Uchiyama, T., Fujita, T., Gukasyan, H. J., Kim, K. J., Borok, Z., Crandall, E. D., & Lee, V. H. (2008). Functional characterization and cloning of amino acid transporter B(0,+) (ATB(0,+)) in primary cultured rat pneumocytes. Journal of cellular physiology, 214(3), 645–654. https://doi.org/10.1002/jcp.21254
66. UniProt. (2022). UniProt Knowledgebase [Data set]. https://www.uniprot.org/uniprot/
67. Verzola, D., Picciotto, D., Saio, M., Aimasso, F., Bruzzone, F., Sukkar, S. G., Massarino, F., Esposito, P., Viazzi, F., & Garibotto, G. (2020). Low Protein Diets and Plant-Based Low Protein Diets: Do They Meet Protein Requirements of Patients with Chronic Kidney Disease?. Nutrients, 13(1), 83. https://doi.org/10.3390/nu13010083
68. V'kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews. Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
69. Wamai, R. G., Hirsch, J. L., Van Damme, W., Alnwick, D., Bailey, R. C., Hodgins, S., Alam, U., & Anyona, M. (2021). What could explain the lower COVID-19 burden in Africa despite considerable circulation of the SARS-CoV-2 virus? International Journal of Environmental Research and Public Health, 18(16), 8638. https://doi.org/10.3390/ijerph18168638
70. Weibel E. R. (2015). On the tricks alveolar epithelial cells play to make a good lung. American journal of respiratory and critical care medicine, 191(5), 504–513. https://doi.org/10.1164/rccm.201409-1663OE
71. Wilkinson, D. J., Bukhari, S. S. I., Phillips, B. E., Limb, M. C., Cegielski, J., Brook, M. S., Rankin, D., Mitchell, W. K., Kobayashi, H., Williams, J. P., Lund, J., Greenhaff, P. L., Smith, K., & Atherton, P. J. (2018). Effects of leucine-enriched essential amino acid and whey protein bolus dosing upon skeletal muscle protein synthesis at rest and after exercise in older women. Clinical Nutrition (Edinburgh, Scotland), 37(6 Pt A), 2011–2021. https://doi.org/10.1016/j.clnu.2017.09.008
72. Worldometers. (2022). COVID-19 Coronavirus pandemic [Data set]. https://www.worldometers.info
73. Wu, G. (2016). Dietary protein intake and human health. Food & Function, (7), 1251–1265.
74. Wu, J., Zhao, M., Li, C., Zhang, Y., & Wang, D. W. (2021). The SARS-CoV-2 induced targeted amino acid profiling in patients at hospitalized and convalescent stage. Bioscience Reports, 41(3), BSR20204201. https://doi.org/10.1042/BSR20204201
75. Yadav, R., Chaudhary, J. K., Jain, N., Chaudhary, P. K., Khanra, S., Dhamija, P., Sharma, A., Kumar, A., & Handu, S. (2021). Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells, 10(4), 821. https://doi.org/10.3390/cells10040821
76. Yamamoto, H., Kondo, K., Tanaka, T., Muramatsu, T., Yoshida, H., Imaizumi, A., Nagao, K., Noguchi, Y., & Miyano, H. (2016). Reference intervals for plasma-free amino acid in a Japanese population. Annals of Clinical Biochemistry, 53(Pt 3), 357–364. https://doi.org/10.1177/0004563215583360
77. Yang, Y., Churchward-Venne, T. A., Burd, N. A., Breen, L., Tarnopolsky, M. A., & Phillips, S. M. (2012). Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutrition & Metabolism, 9(1), 57. https://doi.org/10.1186/1743-7075-9-57
78. Yapasert, R., Khaw-On, P., & Banjerdpongchai, R. (2021). Coronavirus infection-associated cell death signaling and potential therapeutic targets. Molecules (Basel, Switzerland), 26(24), 7459. https://doi.org/10.3390/molecules26247459
79. Yoshimoto, F. K. (2020). The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. The Protein Journal, 39(3), 198–216. https://doi.org/10.1007/s10930-020-09901-4
До рецензирования и редактирования эта статья была опубликована как препринт Ponomarenko S. V. Accessibility of Essential Amino Acids, Synthesis of SARS-CoV-2 Virus Polyproteins, and the Outcomes of COVID-19 Pathogenesis 2022-02-16 https://doi.org/10.21055/
Рецензия
Для цитирования:
Пономаренко С.В. Влияние незаменимых аминокислот на синтез полипротеинов вируса SARS-CoV-2 в патогенезе COVID-19. Health, Food & Biotechnology. 2023;5(1). https://doi.org/10.36107/hfb.2023.i1.s162
For citation:
Ponomarenko S. Influence of Essential Amino Acids on the Synthesis of Polyproteins of the SARS-CoV-2 Virus in the COVID-19 Pathogenesis. Health, Food & Biotechnology. 2023;5(1). https://doi.org/10.36107/hfb.2023.i1.s162