Preview

Health, Food & Biotechnology

Advanced search

The Indication of Biofilms and Non-Cultivated Microorganisms while Monitoring the Biological Safety of Food Raw Materials

https://doi.org/10.36107/hfb.2019.i3.s260

Abstract

The relevance of the study and the presence of gaps in existing knowledge on the topic. Monitoring the biosafety of food raw materials by microbiological indicators is an urgent problem due to an increase in the number foodborne infections worldwide.

The aim of the work is to study the features of the formation of biofilms and uncultured microorganisms under various cultivation conditions

Methods. Morphometric and densitometric indicators of biofilms and uncultured microorganisms were studied under various cultivation conditions. To study the growth and development populations of microorganisms, media containing growth factors for cell wall repair and L-shape reversal of microorganisms were used.

Results and discussion. Microbiological control of critical points in animal husbandry technology and food production has examined the species composition and etiological significance virulence factors of strains producing adhesive antigens, bacteriocins, hemolysins, toxins, extended-spectrum p-lactamases, which determine the tendency to increase multidrug resistance. The morphological and functional features of biofilms, which are communities of microorganisms that secrete the polymer matrix and adhere to tissues of susceptible animal species and abiotic surfaces of livestock buildings and food production, were studied. Direct correlative relationships between filamentation, dispersion multi-species biofilms of microorganisms and the development dystrophic and necrotic processes in the tissues and organs mammals and birds have been established. To optimize the microbiological diagnosis of infectious diseases, effective methods for detecting heteromorphic biofilms and uncultured microorganisms have been tested and selected. To prevent the formation biofilms of pathogenic microorganisms, drugs that reduce the level of microbiological parameters primary contamination are promising; minimize adhesive properties, as well as biocides that destroy the intercellular matrix.

Conclusions. The ability to form biofilms, the variability of phenotypic characters, the multiplicity of virulence factors, the emergence of resistant forms of bacteria due to the synthesis exopolysaccharides, significantly reduce the effectiveness antiepizootic and diagnostic measures. The development of accelerated methods for the detection of biofilms and the differentiation of uncultivated microorganisms will make it possible to scientifically substantiate and develop a set of measures aimed at preventing animal diseases and obtaining safe livestock products in order to prevent human diseases.

About the Authors

E. M. Lenchenko
Moscow State University of Food Production
Russian Federation

Ekaterina M. Lenchenko

11 Volokolamskoe highway, Moscow, 125080 



N. Y. Sysoeva
Moscow State University of Food Production
Russian Federation

Nataliya Y. Sysoeva

11 Volokolamskoe highway, Moscow, 125080 



D. A. Blumenkrants
Moscow State University of Food Production
Russian Federation

Dmitriy A. Blumenkrants

11 Volokolamskoe highway, Moscow, 125080 



References

1. Abdullaeva, A. M., Smirnova, I. R., Trochemets, E. V., & Gubankova A. A. (2017). Microbiological control of semi-finished products from turkey meat during refrigerated storage. Veterinariya [Veterinary Science], 8, 49-53.

2. Andryukov, B. G., Somova, L. M., Matosova, E. V., & Lyapun, I. N. (2018). Phenotypic plasticity of bacteria as a strategy of resistance and an object of modern antimicrobial technologies. Sovremennye tekhnologii v medicine [Modern technologies in medicine], 11(2), 164-182. http://dx.doi.org/10.17691/stm2018.11.2.22

3. Bakumenko, O. E., Andreeva, A. A., & Alekseenko, E. V. (2019). Study of the influence of prescription ingredients on the quality indicators of canned meat for baby food. Health, Food and Biotechnology, 1(1), 61-74. http://dx.doi.org/10.36107/hfb.2019.i1.s3.

4. Blinkova, L.P., Pakhomov, Yu.D., & Stoyanova, L.G. (2010). Properties of uncultivated and resting forms of microorganisms. Immunopatologiya, allergologiya, infektologiya [Immunopathology, allergology, infectology], 3, 67-76.

5. Glamazdin, I. G., Sysoeva, N. Yu., Sikoeva, P. K., Pershina, T. A., & Kryukovskaya, G. M. (2019). The defeat of pork tissue cysts, the control of raw materials with sarcocystosis. Rossijskij zhurnal Problemy veterinarnoj sanitarii, gigieny i ekologii [Russian Journal of Problems of Veterinary Sanitation, Hygiene and Ecology], 2(30), 121-125. http://dx.doi.org/10.25725/vet.san.hyg.ecol.201902002.

6. Kirsh, I. A., & Frolova, Yu. V. (2016) Antimicrobial packaging materials for the meat industry. Myasnye tekhnologii [Meat Technologiesj, 6, 20-21.

7. Lenchenko E. M. (1996). Morphofunctional properties and population variability of Yersinia affecting farm animals, depending on the temperature factor. Sel’skohozyajstvennaya biologiya [Agricultural Biology], 6, 88-95.

8. Lenchenko E. M., Vanina N. N. (2005). Morphology of the digestive organs and intestinal microflora of chickens infected with Escherichia coli. Sel’skohozyajstvennaya biologiya [Agricultural Biology], 4, 69-74.

9. Lenchenko, E. M., Mansurova, E. A., & Motorygin, A. V. (2014). Characterization of toxigenicity of enterobacteria isolated in gastrointestinal diseases of farm animals. Sel’skohozyajstvennaya biologiya [Agricultural Biology], 2, 94-104.

10. Lenchenko, E. M., Khai, F. V., Vatnikov, Yu. A., Medvedev, I. N., & Gavrilov, V. A. (2017). Etiological structure and differential diagnosis of avian salmonellosis. Vestnik Rossijskogo universiteta druzhby narodov. Seriya: Agronomiya i zhivotnovodstvo [Bulletin of the Peoples’ Friendship University of Russia. Series: Agronomy and Livestock], 12(4), 359-367. http://dx.doi.org/0.22363/2312-797X-2017-12-4-359-367.

11. Sachivkina, N. P., Kravtsov, E. G., & Vasilieva, E. A. (2008). The study of the enzyme lithicase as a new antimycotic drug. Vestnik Rossijskogo universiteta druzhby narodov. Seriya: Agronomiya i zhivotnovodstvo [Bulletin of the Peoples’ Friendship University of Russia. Series: Agronomy and Livestock], 3, 37-43.

12. Skorodumov, D. I., Yarikova, Yu. A., & Pavlova, E. V. (2012). The role of bacterial biofilms in the infectious pathology of animals and food production. Veterinariya sel’skohozyajstvennyh zhivotnyh [Veterinary of farm animals], 4, 4-7.

13. Sysoeva, N. Yu., Subbotin, V. V., & Verkhovskaya, G. L. (2003). The use of lactobifadol to correct the violation of the gastrointestinal tract of lambs in preparation for deworming. Veterinarnaya patologiya [Veterinary Pathology], 2(6), 44-46.

14. Abdullaeva, A. M., Blinkova, L. P., Seryogin, I. G., Udavliev, D. I., Shikhov, S. S., & Pakhomov, Yu. D. (2019). Preventive treatment of druing chamber with uv radiation and ozonization for protection against spoilace of rav smoked sausages. RAP Conference Proceedings, 4, 206-211. http://dx.doi.org/10.37392/RapProc.2019.42

15. Becerra, S. C., Roy, D. C., Sanchez, C. J., Christy, R. J., & Burmeister, D. M. (2016). An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue. BMC research notes, 216(9), 10. http://dx.doi.org/10.1186/s13104-016-1902-0

16. Beznaeva, O., Kirsh, I., Bannikova, O. (2018). Surface structure of electret polymeric materials in different process conditions by corona discharge. Amazonia Investiga, 7(14), 39-49.

17. Cadavid, Е., & Echeverri F. (2019). The Search for Natural Inhibitors of Biofilm Formation and the Activity of the Autoinductor C6-AHL in Klebsiella pneumoniae ATCC 13884. Biomolecules, 2(6), 1-12. http://dx.doi.org/10.3390/biom9020049

18. Cai, Y., Yang, D., Wang, J., & Wang, R. (2018). Activity of colistin alone or in combination with rifampicin or meropenem in a carbapenem-resistant bioluminescent Pseudomonas aeruginosa intraperitoneal murine infection model. Journal of Antimicrobial Chemotherapy, 73(2), 456461. http://dx.doi.org/10.1093/jac/dkx399

19. Carreiro, A. P., Guedes, S. F., Panariello, B. H., Silveira, P. V., Janal, M. N., & Duarte, S. (2017). Farnesol Antibiofilm Activity against Candida albicans Reference and Mutant Strains. Microbiology Research Journal International, 22(6), 1-7. http://dx.doi.org/10.9734/MRJI/2017/39345

20. Chandra, J., Kuhn, D. M. , Mukherjee, P. K. , Hoyer, L. L. , McCormick, T., & Ghannoum, M. A. (2001). Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. Journal of bacteriology, 183(18), 5385-5394. http://dx.doi.org/10.1128/jb.183.18.5385-5394.2001

21. Fangjun, C., Zhangcheng, L., Shimei, L., Wei, L., Xiaoyan, Z., Zuoyong, S., Zhenhui, W., Juan, Z., & Manli, S. (2018). Characterization of Klebsiella pneumoniae associated with cattle infections in southwest China using multi-locus sequence typing (MLST), antibiotic resistance and virulence-associated gene profile analysis. Brazilian Journal of Microbiology, 1(49), 93-100. http://dx.doi.org/10.1016/j.bjm.2018.06.004

22. Kontsevaya, S., & Shambazova, S. (2019). Electronic Certification as an Instrument of Effective Veterinary Control in the Turnover of Animal Origin Products. Advances in Biological Sciences Research, 7, 160-162. https://dx.doi.org/10.2991/isils-19.2019.38

23. Kondakova, I. A., Lenchenko, E. М., & Lomova, J. V. (2016). Dynamics of immunologic indices in diseases of bacterial etiology and the correction of immune status of calves. Journal of Global Pharma Technology, 11(8), 8-11. http://dx.doi.org/10.14202/JoGPT.2016.121-160

24. Lenchenko, E., Lozovoy, D., Strizhakov, A., Vatnikov, Yu, Byakhova, V., Kulikov, E., Sturov, N., Kuznetsov, V., Avdotin, V., & Grishin, V. (2019). Features of formation of Yersinia enterocolitica biofilms. Veterinary World, 12(1), 136-140. http://dx.doi.org/10.14202/vetworld.2019.136-140

25. Lenchenko, E. M., Vatnikov, Y. A., Sotnikova, E. D., Kulikov, E. V. Gnezdilova., L. A., Seleznev, S. B., Strizhakov, A. A., & Kuznetsov, V. I. (2017). Experimental toxemia of chickens contaminated with Yersinia enterocolitica Bacteria. Asian Journal of Pharmaceutics, 11(1), 91-96. http://dx.doi.org/10.22377/ajp.v11i01.1094

26. Maarten, G. K., & Ghequire, B. 0. (2018). A Colicin M-Type Bacteriocin from Pseudomonas aeruginosa Targeting the HxuC Heme Receptor Requires a Novel Immunity Partner. Applied and Environmental Microbiology, 84(18), 6-10. http://dx.doi.org/10.1128/AEM.00716-18

27. Mannapova, R. T., & Shajhulow, R. R. (2018). Dynamics of Lactobacillus spp. against the backdrop of candidiasis in the digestive tract of geese. In Scientific research of the SCO countries: Synergy and integration (p. 248-252).

28. McVay, C. S.,Velasquez, M., & Fralick, J. A. (2007). Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrobial agents and chemotherapy, 51(6), 1934-1938. http://dx.doi.org/10.1128/AAC.01028-06

29. Nidaullah, H., Abirami, N., Shamila-Syuhada, A. K., Chuah, L. O., Nurul, H., Tan, T. P., Abidin, F. W., & Rusul, G. (2017). Prevalence of Salmonella in poultry processing environments in wet markets in Penang and Perlis. Veterinary World, 10(3), 286-292. http://dx.doi.org/10.14202/vetworld.2017.286-292

30. Pakhomov, Y. D., Belus, S. K., Blinkova, L. P., Stoyanova, L. G., & Ustyugova, E. A. (2012). Experimental approach to the induction of nonculturable state of Lactococcus lactis. Biochemistry and Biotechnology: Research and Development, 7, 45-50.

31. Pate, M., Micunovic, J., Golob, M., Vestby, L. K., & Ocepek M. (2019). Salmonella infantis in broiler flocks in Slovenia: the prevalence of multidrug resistant strains with high genetic homogeneity and low biofilm-forming ability. BioMed Research International, 51(6), 238-242. http://dx.doi.org/10.1155/2019/4981463

32. Sachivkina, N., Lenchenko, E., Strizakov, A., Zimina, V., Gnesdilov, L., Gavrilov, V., Byakhova, V., Germanova, S., Zharov, A., & Molchanova, M. (2018). The Evaluation of formation of biomembrane by microscopic Fungi of the Candida Genus. InternationalJournal of Pharmaceutical Research, 10(4), 738-744. http://dx.doi.org/10.31838/ijpr/2018.10.04.128

33. Santos, T., Luana, O., Varjaoa, M., Nery, L., Silvaa, N., Castro, R., Pereirab, L., Hoferb, E., Cristina, D., Rogeria, V., & Almeidaa, C. (2018). Listeria monocytogenes at chicken slaughterhouse: Occurrence, genetic relationship among isolates and evaluation of antimicrobial susceptibility. Food Control, 88, 131-138. http://dx.doi.org/10.1016/j.foodcont.2018.01.015

34. Sicard, J-F., G. L., Bihan, P., Vogeleer, M., & Jacques, J. (2017). Harel Interactions of Intestinal Bacteria with Components of the Intestinal Mucus. Frontiers in Cellular and Infection Microbiology, 7 (387), 1-12. http://dx.doi.org/10.3389/fcimb.2017.00387

35. Sushma, V., Nehra, V., & Jakhar, K. (2018). Aetio-Pathological studies of digestive and respiratory affections in lambs. The Pharma Innovation Journal, 5 (7), 100-105.

36. Surgers, L., Boyd, A., Girard, P. M., Arlet, G., & Decre, D. (2019). Biofilm formation by ESBL-producing strains of Escherichia coli and Klebsiella pneumoniae. International Journal of Medical Microbiology, 309(1), 13-18.

37. Rodriguez-Melcon, C., Riesco-Pelaez, F., Carballo, J., Garcia-Fernandez, C., Capita, R., & Alonso-Calleja, C. (2018). Structure and viability of 24-and 72-h-old biofilms formed by four pathogenic bacteria on polystyrene and glass contact surfaces. Food Microbiology, 76, 513-517. http://dx.doi.org/10.1016/j.fm.2018.06.016

38. Tankhiwale, S., & Nagar, H. (2016). Beta-lactamases in P. aeruginosa: A threat to clinical therapeutics. Current Pediatric Research, 20(12), 253-257.

39. WHO, (2018). Estimates of the global burden offoodborne diseases. World Health Organization.

40. Yadav, R., Bulitta, J. B., Wang, J., Nation, R. L., & Landersdorfer, C. B. (2017). Evaluation of Pharmacokinetic/Pharmacodynamic ModelBased Optimized Combination Regimens against Multidrug-Resistant Pseudomonas aeruginosa in a Murine Thigh Infection Model by Using Humanized Dosing Schemes. Antimicrobial agents and chemotherapy, 61(12), 8-11. http://dx.doi.org/10.1128/AAC.01268-17


Review

For citations:


Lenchenko E.M., Sysoeva N.Y., Blumenkrants D.A. The Indication of Biofilms and Non-Cultivated Microorganisms while Monitoring the Biological Safety of Food Raw Materials. Health, Food & Biotechnology. 2019;1(3):35-46. (In Russ.) https://doi.org/10.36107/hfb.2019.i3.s260

Views: 437


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)