Realization of the Therapeutic and Preventive Potential of Health–Improving Food Products — Focus on Effectiveness (Review of Research Methodology)
https://doi.org/10.36107/hfb.2024.i1.s199
Abstract
Introduction. Currently, the Russian market of products with special health effects (POVZ) is not developing dynamically enough; the real benefits of such products often do not meet consumer expectations. It is assumed that one of the reasons for this is the lack of reliably confirmed effectiveness, dosage, duration of exposure to the body and aftereffects.
Purpose. The authors set a goal to present a modern methodology for solving these problems at various levels, including cellular and organismal, based on an analysis of domestic and foreign publications in recent years.
Materials and Methods. To write this review, peer-reviewed original articles, reviews and monographs published in Russian and English between 2003 and 2023 were used. The studied selection of sources included 112 publications posted in domestic and foreign databases, such as Scopus, Web of Science, SciHub, PubMed, Google scholar, e-library and RISC. When analyzing publications for relevance to the topic, 56 sources were selected, which were further examined in detail.
Results. The authors presented the state of legal regulation of the effectiveness of POVZ in Russia and abroad, and also discussed the following issues: biological models in vitro and in vivo for testing the effectiveness of POVZ, an integrated approach to studying the immunotropic activity of POVZ, foodomics and artificial intelligence for analysis efficiency of POVZ.
Conclusions. Experiments on in vitro biomodels will remain in the future importance for assessing the molecular and cellular mechanisms of action of POVZ, as well as the magnitude of the effect, while in vivo experiments will not only provide a systematic analysis of the results obtained, but will also specify the dose, the required duration of exposure and the duration of the aftereffect, as well as other characteristics of the health product being studied.
About the Authors
Aleksandra S. UtkinaRussian Federation
Polina G. Molodkina
Russian Federation
Vasily P. Karagodin
Russian Federation
References
1. Викторова, Е. П., Лисовая, Е. В., Свердличенко, А. В., Воробьева, О. В., & Основин, И. В. (2021). Актуальные вопросы применения комплексов микронутриентов для обогащения продуктов питания. Технологии пищевой и перерабатывающей промышленности АПК – продукты здорового питания, (1), 89-97.
2. Гаптар, С. Л., Сороколетов, О. Н., Тарабанова, Е. В., Кошелева, Е. А., Лисиченок, О. В., & Головко, А. Н. (2021). Расширение ассортиментной линейки пищевых продуктов специализированного назначения и функциональной направленности. Инновации и продовольственная безопасность, 4(34), 55-67.
3. Глазкова, И. В., Саркисян, В. А., Сидорова, Ю. С., Мазо, В. К., & Кочеткова, А. А. (2017). Основные этапы оценки эффективности специализированных пищевых продуктов. Пищевая промышленность, (12), 8-11.
4. Долго-Сабурова, Ю. В., Зазерская, И. Е., & Дорофейков, В. В. (2021). Витамин D и противоинфекционный иммунитет. Выбор метода диагностики и контроля лечения дефицита и недостаточности витамина D. Лабораторная служба, 10(2). https://doi.org/10.17116/labs20211002147
5. Еремина, Н. В., Колик, Л. Г., Островская, Р. У., & Дурнев, А. Д. (2020). Доклинические исследования нейротоксических свойств новых лекарственных препаратов in vivo. Ведомости Научного центра экспертизы средств медицинского применения, (3), 164-176.
6. Кокинос, Е. К., Кузьмина, Д. О., Кучур, О. А., Цымбал, С. А., Василичин, В. А., Галочкина, А. В., Завирский, А. В., Башарин, В. А., Штро, А. А., Штиль, А. А., & Духинова, М. С. (2022). Фенотипический и функциональный анализ линии моноцитов THP-1 как модели воспаления. Иммунология, 43(3), 277-287. https://doi.org/10.33029/0206-4952-2022-43-3-277-287
7. Кочеткова, А. А., Воробьева, В. М., Саркисян, В. А., Воробьева, И. С., Смирнова, Е. А., & Шатнюк, Л. Н. (2020). Динамика инноваций в технологии производства пищевых продуктов: от специализации к персонализации. Вопросы питания, 89(4), 233–243. https://doi.org/10.24411/0042-8833-2020-10056
8. Молибога, Е. А., Сухостав, Е. В., Козлова, О. А., & Зинич, А. В. (2022). Анализ рынка функционального питания: российский и международный аспект. Техника и технология пищевых производств, 52(4), 775-786.
9. Пинегин, Б. В., & Хаитов, Р. М. (2019). Современные принципы создания иммунотропных лекарственных препаратов. Иммунология, 40(6), 57–62.
10. Раменская, Г. В., Шохин, И. Е., Давыдова, К. С., & Савченко, А. Ю. (2011). In vivo in vitro корреляция (ivivc): современный инструмент для оценки поведения лекарственных форм в условиях in vivo. Медицинский альманах, (1), 222-226.
11. Уткина, А. С., & Карагодин, В. П. (2023). Коммерчески доступные глюканы разного сырьевого происхождения – оптимизация использования с позиций нутригеномики. Индустрия питания|Food Industry, 8(2), 6–12. https://doi.org/10.29141/2500-1922-2023-8-2-1
12. Уткина, А. С., Козлов, А. Н., Никитин, И. А., & Карагодин, В. П. (2021). Витамин D: фокус на группах риска и нетрадиционных источниках. Технология и товароведение инновационных пищевых продуктов, 6(71), 57-71.
13. Хаитов, Р. М. (2020). Иммуномодуляторы: мифы и реальность. Иммунология, 41(2), 101-106. https://doi.org/.33029/0206-4952-2020-41-2-101-106
14. Abdelmohsen, U. R., Sayed, A. M., & Elmaidomy, A. H. (2022). Natural Products’ Extraction and Isolation-Between Conventional and Modern Techniques. Frontiers in Natural Products, 1, 873808. https://doi.org/10.3389/fntpr.2022.873808
15. Ahmed, S., de la Parra, J., Elouafi, I., German, B., Jarvis, A., Lal, V., Lartey, A., Longvah, T., Malpica, C., Vázquez-Manjarrez, N., Prenni, J., Aguilar-Salinas, C. A., Srichamnong, W., Rajasekharan, M., Shafizadeh, T., Siegel, J. B., Steiner, R., Tohme, J. & Watkins, S. (2022) Foodomics: A Data-Driven Approach to Revolutionize Nutrition and Sustainable Diets. Frontiers in Nutrition, 9, 874312. https://doi.org/10.3389/fnut.2022.874312
16. Baillif, B., Wichard, J., Méndez-Lucio, O., & Rouquié, D. (2020). Exploring the Use of Compound-Induced Transcriptomic Data Generated From Cell Lines to Predict Compound Activity Toward Molecular Targets. Frontiers in Chemistry, 8, 296. https://doi.org/10.3389/fchem.2020.00296
17. Beane, K. E., Redding, M. C., Wang, X, Pan, J. H., Le, B., Cicalo, C., Jeon, S., Kim, Y.J., Lee, J.H., Shin, E.-Ch., Li, Y., Zhao, J., & Kim, J. K. (2021). Effects of dietary fibers, micronutrients, and phytonutrients on gut microbiome: a review. Applied Biological Chemistry, 64, 36. https://doi.org/10.1186/s13765-021-00605-6
18. Blanter, M., Gouwy, M., & Struyf, S. (2021). Studying Neutrophil Function in vitro: Cell Models and Environmental Factors. Journal of Inflammation Research, 14, 141-162. https://doi.org/10.2147/JIR.S284941
19. Buzdin, A., Tkachev, V., Zolotovskaia, M., Garazha, A., Moshkovskii, S., Borisov, N., Gaifullin, N., Sorokin, M., & Suntsova M. (2021) Using proteomic and transcriptomic data to assess activation of intracellular molecular pathways. Advances in Protein Chemistry and Structural Biology, 127, 1-53. https://doi.org/10.1016/bs.apcsb.2021.02.005
20. Carlberg, C. (2018). Vitamin D genomics: From in vitro to in vivo. Frontiers in Endocrinology, 9, 250. https://doi.org/10.3389/fendo.2018.00250
21. Carlberg, C., & Haq, A. (2018). The concept of the personal vitamin D response index. Journal of Steroid Biochemistry and Molecular Biology, 175, 12–17. https://doi.org/10.1016/j.jsbmb.2016.12.011
22. Chen, Q. M., & Alpert, J. S. (2016). Nutraceuticals: Evidence of benefit in clinical practice? The American Journal of Medicine, 129(9), 897-898. https://doi.org/10.1016/j.amjmed.2016.03.036
23. Chen, S., & Martirosyan, D. (2021). Marketing strategies for functional food products. Functional Foods in Health and Disease, 11(8), 345-356. https://doi.org/10.31989/ffhd.v11i8.817
24. Chen, S., Saeed, A. F. U. H., Liu, Q., Jiang, Q., Xu, H., Xiao, G. G., Rao, L., & Duo, Y. (2023). Macrophages in immunoregulation and therapeutics. Signal Transduction and Targeted Therapy, 8, 207. https://doi.org/10.1038/s41392-023-01452-1
25. Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L. & Carmeliet, G. (2016). Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiological Reviews, 96(1), 365–408. https://doi.org/10.1152/physrev.00014.2015
26. Cicero, A. F. G., & Colletti, A. (2015). Nutraceuticals and blood pressure control: Results from clinical trials and meta-analyses. High Blood Pressure & Cardiovascular Prevention, 22(3), 203-213. https://doi.org/10.1007/s40292-015-0081-8
27. Class, L.-C., Kuhnen, G., Rohn, S., & Kuballa, J. (2021). Diving deep into the data: A review of deep learning approaches and potential applications in foodomics. Foods, 10, 1803. https://doi.org/10.3390/foods10081803
28. Danku, A.E., Dulf, E-H., Braicu, C., Jurj, A., Berindan-Neagoe, I. Organ-On-A-Chip. (2022). A survey of technical results and problems. Frontiers in Bioengineering and Biotechnology. 2022. 10:840674. https://doi.org/10.3389/fbioe.2022.840674.
29. Emes, R. D, Goodstadt, L., Winter, E. E., & Ponting, C. P. (2003). Comparison of the genomes of human and mouse lays the foundation of genome zoology. Human Molecular Genetics, 12(7), 701-9. https://doi.org/10.1093/hmg/ddg078
30. Floyd, Z. E., Ribnicky, D. M., Raskin, I., Hsia, D. S., Rood, J. C., & Gurley, B. J. (2022). Designing a clinical study with dietary supplements: It's all in the details. Frontiers in Nutrition, 8, 779486. https://doi.org/10.3389/fnut.2021.77948
31. Framroze, B., Havaldar, F., & Misal, S. (2018). An in vitro study on the regulation of oxidative protective genes in human gingival and intestinal epithelial cells after treatment with salmon protein hydrolysate peptides. Functional Foods in Health and Disease, 8(8), 398-411. https://doi.org/10.31989/ffhd.v8i8.529
32. García-Cañas, V., Simó, C., León, C., & Cifuentes, A. (2010). Advances in Nutrigenomics research: novel and future analytical approaches to investigate the biological activity of natural compounds and food functions. Journal of pharmaceutical and biomedical analysis, 51(2), 290-304. https://doi.org/10.1016/j.jpba.2009.04.019
33. Hassanizadeh, S., Shojaei, M., Bagherniya, M., Orekhov, A. N., & Sahebkar, A. (2023). Effect of nano-curcumin on various diseases: A comprehensive review of clinical trials. Biofactors, 49(3), 512-533. https://doi.org/10.1002/biof.1932
34. Jin, X., Ruiz Beguerie, J., Sze, D. M., & Chan, G. C. (2016). Ganoderma lucidum (Reishi mushroom) for cancer treatment. Cochrane database of systematic reviews, 4(4), CD007731. https://doi.org/10.1002/14651858.CD007731.pub3
35. Kanauchi, O., Andoh, A., Bakar, S., & Yamamoto, N. (2018). Probiotics and paraprobiotics in viral infection: clinical application and effects on the innate and acquired immune systems. Current Pharmaceutical Design, 24, 710–7. https://doi.org/10.2174/1381612824666180116163411
36. Karagodin, V. P., Sukhorukov, V. N., Orekhov, A. N., Yet, S.-F., & Sobenin, I. (2020). A. Prevention of atherosclerosis: the role of special diets and functional foods. Frontiers in Bioscience. Elite, 12. 95-101. https://doi.org/10.2741/S540
37. Khalaf, A. T., Wei, Y., Alneamah, S. J. A., Al-Shawi, S. G., Kadir, S. Y. A., Zainol, J., & Liu, X. (2021). BioMed Research International, 2021, 8823222, 9. https://doi.org/10.1155/2021/8823222
38. Khorraminezhad, L., Leclercq, M., Droit, A., Bilodeau, J., & Rudkowska, I. (2020). Statistical and machine-learning analyses in nutritional genomics studies. Nutrients, 12, 3140. https://doi.org/10.3390/nu12103140
39. Klupp, N. L., Chang, D., Hawke, F., et al. (2015). Ganoderma lucidum mushroom for the treatment of cardiovascular risk factors. The Cochrane database of systematic reviews, 2015(2), CD007259. https://doi.org/10.1002/14651858.CD007259.pub2
40. Medeiros, J. F. P., de Oliveira Borges, M. V., & Soares, A. A. (2020). The impact of vitamin D supplementation on VDR gene expression and body composition in monozygotic twins: randomized controlled trial. Scientific Reports, 10(1), 11943. https://doi.org/10.1016/j.clnu.2019.08.015
41. Mortensen, A., Sorensen, I. K., Wilde, C., Dragoni, S., Mullerová, D., Toussaint, O., Zloch, Z., Sgaragli, G., & Ovesná, J. (2008). Biological models for phytochemical research: from cell to human organism. British Journal of Nutrition, 99, 118-26. https://doi.org/10.1017/S0007114508965806
42. Moss, J. W. E., Davies, T. S., Garaiova, I., Plummer, S. F., Michael, D. R., & Ramji, D. P. (2016). A Unique Combination of Nutritionally Active Ingredients Can Prevent Several Key Processes Associated with Atherosclerosis In Vitro. Public Library of Science, 11(3), e0151057. https://doi.org/10.1371/journal.pone.0151057
43. Motilva, M. J., Serra, A., & Rubió, L. (2015). Nutrikinetic studies of food bioactive compounds: from in vitro to in vivo approaches. International Journal of Food Sciences and Nutrition, 66, 41-52. https://doi.org/10.3109/09637486.2015.1025721
44. Nicolescu, A., Babotă, M., Barros, L., Rocchetti, G., Lucini, L., Tanase, C., Mocan, A., Bunea, C. I., & Crișan, G. (2023) Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Frontiers in Nutrition, 10, 1184535. https://doi.org/10.3389/fnut.2023.1184535
45. Nikolic, M., Sustersic, T., & Filipovic, N. (2018). In vitro models and on-chip systems: Biomaterial Interaction studies with tissues generated using lung epithelial and liver metabolic cell lines. Frontiers in Bioengineering and Biotechnology, 6, 120. https://doi.org/10.3389/fbioe.2018.00120
46. Pandita, D., & Pandita, A. (2022). Omics technology for the promotion of nutraceuticals and functional foods. Frontiers in Physiology, 13, 817247. https://doi.org/10.3389/fphys.2022.817247
47. Singh, S., Kola, P., Kaur, D., Singla, G., Mishra, V., Panesar, P. S., Mallikarjunan, K., & Krishania, M. (2021). Therapeutic potential of nutraceuticals and dietary supplements in the prevention of viral diseases: A review. Frontiers in Nutrition, 8. 679312. https://doi.org/10.3389/fnut.2021.679312
48. Srinivasan, M. (2020). Foodomics: The what, why and how of it. In: Singh, S. (Eds.) Metagenomic Systems Biology. https://doi.org/10.1007/978-981-15-8562-3_9
49. Uthpala, T. G., Fernando, H. N., Thibbotuwawa, A., & Jayasinghe, M. (2020). Importance of nutrigenomics and nutrigenetics in food Science. MOJ Food Processing & Technology, 8(3), 114-119. https://doi.org/10.15406/mojfpt.2020.08.00250
50. Utkina, A. S., & Karagodin. V. P. (2021). Nutrigenomics as a tool for optimizing the composition of specialized food products by the efficiency criterion. IOP Conference Series: Earth and Environmental Science, 677(4), 042050.
51. Utkina, A. S., Karagodin, V .P., Agapkin, A. M., & Kotelevtsev, S. V. (2021). Genotoxicants in marine and freshwater fish of the Barents Sea Basin. IOP Conf. Series: Earth and Environmental Science, 677, 052110. https://doi.org/10.1088/1755-1315/677/5/052110
52. Van Steenwijk, H. P., Bast, A., & de Boer, A. (2021). Immunomodulating effects of fungal beta-glucans: From traditional use to medicine. Nutrients, 13, 1333. https://doi.org/10.3390/nu13041333
53. Wei, G., & Martirosyan, D. (2019). Hair loss: A review of the role of food bioactive compounds. Bioactive Compounds in Health and Disease, 2(5), 94-125. https://doi.org/10.31989/bchd.v2i5.610
54. Yasmeen, R., Fukagawa, N. K., & Wang T. T. (2017). Establishing health benefits of bioactive food components: A basic research scientist’s perspective. Current Opinion in Biotechnology, 44(Suppl. 1), 109-114. https://doi.org/10.1016/j.copbio.2016.11.016
55. Zahedipour, F., Hosseini, S. A., Sathyapalan, T., Majeed, M., & Jamialahmadi, T. (2020). Potential effects of curcumin in the treatment of COVID-19 infection. Phytotherapy Research, 34, 2911–20. https://doi.org/10.1002/ptr.6738
56. Zong, J., & Martirosyan, D. M. (2018). Anticancer effects of garlic and garlic-derived bioactive compounds and its potential status as functional food. Bioactive Compounds in Health and Disease, 1(2), 16-35. https://doi.org/10.2174/187152011795347441
Supplementary files
Review
For citations:
Utkina A.S., Molodkina P.G., Karagodin V.P. Realization of the Therapeutic and Preventive Potential of Health–Improving Food Products — Focus on Effectiveness (Review of Research Methodology). Health, Food & Biotechnology. 2024;6(1). (In Russ.) https://doi.org/10.36107/hfb.2024.i1.s199