Preview

Health, Food & Biotechnology

Advanced search

Realization of the Therapeutic and Preventive Potential of Health–Improving Food Products — Focus on Effectiveness (Review of Research Methodology)

https://doi.org/10.36107/hfb.2024.i1.s199

Abstract

Introduction. Currently, the Russian market of products with special health effects (POVZ) is not developing dynamically enough; the real benefits of such products often do not meet consumer expectations. It is assumed that one of the reasons for this is the lack of reliably confirmed effectiveness, dosage, duration of exposure to the body and aftereffects.

Purpose. The authors set a goal to present a modern methodology for solving these problems at various levels, including cellular and organismal, based on an analysis of domestic and foreign publications in recent years.

Materials and Methods. To write this review, peer-reviewed original articles, reviews and monographs published in Russian and English between 2003 and 2023 were used. The studied selection of sources included 112 publications posted in domestic and foreign databases, such as Scopus, Web of Science, SciHub, PubMed, Google scholar, e-library and RISC. When analyzing publications for relevance to the topic, 56 sources were selected, which were further examined in detail.

Results. The authors presented the state of legal regulation of the effectiveness of POVZ in Russia and abroad, and also discussed the following issues: biological models in vitro and in vivo for testing the effectiveness of POVZ, an integrated approach to studying the immunotropic activity of POVZ, foodomics and artificial intelligence for analysis efficiency of POVZ.

Conclusions. Experiments on in vitro biomodels will remain in the future importance for assessing the molecular and cellular mechanisms of action of POVZ, as well as the magnitude of the effect, while in vivo experiments will not only provide a systematic analysis of the results obtained, but will also specify the dose, the required duration of exposure and the duration of the aftereffect, as well as other characteristics of the health product being studied.

About the Authors

Aleksandra S. Utkina
Plekhanov Russian University of Economics
Russian Federation


Polina G. Molodkina
Plekhanov Russian University of Economics
Russian Federation


Vasily P. Karagodin
Plekhanov Russian University of Economics
Russian Federation


References

1. Викторова, Е. П., Лисовая, Е. В., Свердличенко, А. В., Воробьева, О. В., & Основин, И. В. (2021). Актуальные вопросы применения комплексов микронутриентов для обогащения продуктов питания. Технологии пищевой и перерабатывающей промышленности АПК – продукты здорового питания, (1), 89-97.

2. Гаптар, С. Л., Сороколетов, О. Н., Тарабанова, Е. В., Кошелева, Е. А., Лисиченок, О. В., & Головко, А. Н. (2021). Расширение ассортиментной линейки пищевых продуктов специализированного назначения и функциональной направленности. Инновации и продовольственная безопасность, 4(34), 55-67.

3. Глазкова, И. В., Саркисян, В. А., Сидорова, Ю. С., Мазо, В. К., & Кочеткова, А. А. (2017). Основные этапы оценки эффективности специализированных пищевых продуктов. Пищевая промышленность, (12), 8-11.

4. Долго-Сабурова, Ю. В., Зазерская, И. Е., & Дорофейков, В. В. (2021). Витамин D и противоинфекционный иммунитет. Выбор метода диагностики и контроля лечения дефицита и недостаточности витамина D. Лабораторная служба, 10(2). https://doi.org/10.17116/labs20211002147

5. Еремина, Н. В., Колик, Л. Г., Островская, Р. У., & Дурнев, А. Д. (2020). Доклинические исследования нейротоксических свойств новых лекарственных препаратов in vivo. Ведомости Научного центра экспертизы средств медицинского применения, (3), 164-176.

6. Кокинос, Е. К., Кузьмина, Д. О., Кучур, О. А., Цымбал, С. А., Василичин, В. А., Галочкина, А. В., Завирский, А. В., Башарин, В. А., Штро, А. А., Штиль, А. А., & Духинова, М. С. (2022). Фенотипический и функциональный анализ линии моноцитов THP-1 как модели воспаления. Иммунология, 43(3), 277-287. https://doi.org/10.33029/0206-4952-2022-43-3-277-287

7. Кочеткова, А. А., Воробьева, В. М., Саркисян, В. А., Воробьева, И. С., Смирнова, Е. А., & Шатнюк, Л. Н. (2020). Динамика инноваций в технологии производства пищевых продуктов: от специализации к персонализации. Вопросы питания, 89(4), 233–243. https://doi.org/10.24411/0042-8833-2020-10056

8. Молибога, Е. А., Сухостав, Е. В., Козлова, О. А., & Зинич, А. В. (2022). Анализ рынка функционального питания: российский и международный аспект. Техника и технология пищевых производств, 52(4), 775-786.

9. Пинегин, Б. В., & Хаитов, Р. М. (2019). Современные принципы создания иммунотропных лекарственных препаратов. Иммунология, 40(6), 57–62.

10. Раменская, Г. В., Шохин, И. Е., Давыдова, К. С., & Савченко, А. Ю. (2011). In vivo in vitro корреляция (ivivc): современный инструмент для оценки поведения лекарственных форм в условиях in vivo. Медицинский альманах, (1), 222-226.

11. Уткина, А. С., & Карагодин, В. П. (2023). Коммерчески доступные глюканы разного сырьевого происхождения – оптимизация использования с позиций нутригеномики. Индустрия питания|Food Industry, 8(2), 6–12. https://doi.org/10.29141/2500-1922-2023-8-2-1

12. Уткина, А. С., Козлов, А. Н., Никитин, И. А., & Карагодин, В. П. (2021). Витамин D: фокус на группах риска и нетрадиционных источниках. Технология и товароведение инновационных пищевых продуктов, 6(71), 57-71.

13. Хаитов, Р. М. (2020). Иммуномодуляторы: мифы и реальность. Иммунология, 41(2), 101-106. https://doi.org/.33029/0206-4952-2020-41-2-101-106

14. Abdelmohsen, U. R., Sayed, A. M., & Elmaidomy, A. H. (2022). Natural Products’ Extraction and Isolation-Between Conventional and Modern Techniques. Frontiers in Natural Products, 1, 873808. https://doi.org/10.3389/fntpr.2022.873808

15. Ahmed, S., de la Parra, J., Elouafi, I., German, B., Jarvis, A., Lal, V., Lartey, A., Longvah, T., Malpica, C., Vázquez-Manjarrez, N., Prenni, J., Aguilar-Salinas, C. A., Srichamnong, W., Rajasekharan, M., Shafizadeh, T., Siegel, J. B., Steiner, R., Tohme, J. & Watkins, S. (2022) Foodomics: A Data-Driven Approach to Revolutionize Nutrition and Sustainable Diets. Frontiers in Nutrition, 9, 874312. https://doi.org/10.3389/fnut.2022.874312

16. Baillif, B., Wichard, J., Méndez-Lucio, O., & Rouquié, D. (2020). Exploring the Use of Compound-Induced Transcriptomic Data Generated From Cell Lines to Predict Compound Activity Toward Molecular Targets. Frontiers in Chemistry, 8, 296. https://doi.org/10.3389/fchem.2020.00296

17. Beane, K. E., Redding, M. C., Wang, X, Pan, J. H., Le, B., Cicalo, C., Jeon, S., Kim, Y.J., Lee, J.H., Shin, E.-Ch., Li, Y., Zhao, J., & Kim, J. K. (2021). Effects of dietary fibers, micronutrients, and phytonutrients on gut microbiome: a review. Applied Biological Chemistry, 64, 36. https://doi.org/10.1186/s13765-021-00605-6

18. Blanter, M., Gouwy, M., & Struyf, S. (2021). Studying Neutrophil Function in vitro: Cell Models and Environmental Factors. Journal of Inflammation Research, 14, 141-162. https://doi.org/10.2147/JIR.S284941

19. Buzdin, A., Tkachev, V., Zolotovskaia, M., Garazha, A., Moshkovskii, S., Borisov, N., Gaifullin, N., Sorokin, M., & Suntsova M. (2021) Using proteomic and transcriptomic data to assess activation of intracellular molecular pathways. Advances in Protein Chemistry and Structural Biology, 127, 1-53. https://doi.org/10.1016/bs.apcsb.2021.02.005

20. Carlberg, C. (2018). Vitamin D genomics: From in vitro to in vivo. Frontiers in Endocrinology, 9, 250. https://doi.org/10.3389/fendo.2018.00250

21. Carlberg, C., & Haq, A. (2018). The concept of the personal vitamin D response index. Journal of Steroid Biochemistry and Molecular Biology, 175, 12–17. https://doi.org/10.1016/j.jsbmb.2016.12.011

22. Chen, Q. M., & Alpert, J. S. (2016). Nutraceuticals: Evidence of benefit in clinical practice? The American Journal of Medicine, 129(9), 897-898. https://doi.org/10.1016/j.amjmed.2016.03.036

23. Chen, S., & Martirosyan, D. (2021). Marketing strategies for functional food products. Functional Foods in Health and Disease, 11(8), 345-356. https://doi.org/10.31989/ffhd.v11i8.817

24. Chen, S., Saeed, A. F. U. H., Liu, Q., Jiang, Q., Xu, H., Xiao, G. G., Rao, L., & Duo, Y. (2023). Macrophages in immunoregulation and therapeutics. Signal Transduction and Targeted Therapy, 8, 207. https://doi.org/10.1038/s41392-023-01452-1

25. Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L. & Carmeliet, G. (2016). Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiological Reviews, 96(1), 365–408. https://doi.org/10.1152/physrev.00014.2015

26. Cicero, A. F. G., & Colletti, A. (2015). Nutraceuticals and blood pressure control: Results from clinical trials and meta-analyses. High Blood Pressure & Cardiovascular Prevention, 22(3), 203-213. https://doi.org/10.1007/s40292-015-0081-8

27. Class, L.-C., Kuhnen, G., Rohn, S., & Kuballa, J. (2021). Diving deep into the data: A review of deep learning approaches and potential applications in foodomics. Foods, 10, 1803. https://doi.org/10.3390/foods10081803

28. Danku, A.E., Dulf, E-H., Braicu, C., Jurj, A., Berindan-Neagoe, I. Organ-On-A-Chip. (2022). A survey of technical results and problems. Frontiers in Bioengineering and Biotechnology. 2022. 10:840674. https://doi.org/10.3389/fbioe.2022.840674.

29. Emes, R. D, Goodstadt, L., Winter, E. E., & Ponting, C. P. (2003). Comparison of the genomes of human and mouse lays the foundation of genome zoology. Human Molecular Genetics, 12(7), 701-9. https://doi.org/10.1093/hmg/ddg078

30. Floyd, Z. E., Ribnicky, D. M., Raskin, I., Hsia, D. S., Rood, J. C., & Gurley, B. J. (2022). Designing a clinical study with dietary supplements: It's all in the details. Frontiers in Nutrition, 8, 779486. https://doi.org/10.3389/fnut.2021.77948

31. Framroze, B., Havaldar, F., & Misal, S. (2018). An in vitro study on the regulation of oxidative protective genes in human gingival and intestinal epithelial cells after treatment with salmon protein hydrolysate peptides. Functional Foods in Health and Disease, 8(8), 398-411. https://doi.org/10.31989/ffhd.v8i8.529

32. García-Cañas, V., Simó, C., León, C., & Cifuentes, A. (2010). Advances in Nutrigenomics research: novel and future analytical approaches to investigate the biological activity of natural compounds and food functions. Journal of pharmaceutical and biomedical analysis, 51(2), 290-304. https://doi.org/10.1016/j.jpba.2009.04.019

33. Hassanizadeh, S., Shojaei, M., Bagherniya, M., Orekhov, A. N., & Sahebkar, A. (2023). Effect of nano-curcumin on various diseases: A comprehensive review of clinical trials. Biofactors, 49(3), 512-533. https://doi.org/10.1002/biof.1932

34. Jin, X., Ruiz Beguerie, J., Sze, D. M., & Chan, G. C. (2016). Ganoderma lucidum (Reishi mushroom) for cancer treatment. Cochrane database of systematic reviews, 4(4), CD007731. https://doi.org/10.1002/14651858.CD007731.pub3

35. Kanauchi, O., Andoh, A., Bakar, S., & Yamamoto, N. (2018). Probiotics and paraprobiotics in viral infection: clinical application and effects on the innate and acquired immune systems. Current Pharmaceutical Design, 24, 710–7. https://doi.org/10.2174/1381612824666180116163411

36. Karagodin, V. P., Sukhorukov, V. N., Orekhov, A. N., Yet, S.-F., & Sobenin, I. (2020). A. Prevention of atherosclerosis: the role of special diets and functional foods. Frontiers in Bioscience. Elite, 12. 95-101. https://doi.org/10.2741/S540

37. Khalaf, A. T., Wei, Y., Alneamah, S. J. A., Al-Shawi, S. G., Kadir, S. Y. A., Zainol, J., & Liu, X. (2021). BioMed Research International, 2021, 8823222, 9. https://doi.org/10.1155/2021/8823222

38. Khorraminezhad, L., Leclercq, M., Droit, A., Bilodeau, J., & Rudkowska, I. (2020). Statistical and machine-learning analyses in nutritional genomics studies. Nutrients, 12, 3140. https://doi.org/10.3390/nu12103140

39. Klupp, N. L., Chang, D., Hawke, F., et al. (2015). Ganoderma lucidum mushroom for the treatment of cardiovascular risk factors. The Cochrane database of systematic reviews, 2015(2), CD007259. https://doi.org/10.1002/14651858.CD007259.pub2

40. Medeiros, J. F. P., de Oliveira Borges, M. V., & Soares, A. A. (2020). The impact of vitamin D supplementation on VDR gene expression and body composition in monozygotic twins: randomized controlled trial. Scientific Reports, 10(1), 11943. https://doi.org/10.1016/j.clnu.2019.08.015

41. Mortensen, A., Sorensen, I. K., Wilde, C., Dragoni, S., Mullerová, D., Toussaint, O., Zloch, Z., Sgaragli, G., & Ovesná, J. (2008). Biological models for phytochemical research: from cell to human organism. British Journal of Nutrition, 99, 118-26. https://doi.org/10.1017/S0007114508965806

42. Moss, J. W. E., Davies, T. S., Garaiova, I., Plummer, S. F., Michael, D. R., & Ramji, D. P. (2016). A Unique Combination of Nutritionally Active Ingredients Can Prevent Several Key Processes Associated with Atherosclerosis In Vitro. Public Library of Science, 11(3), e0151057. https://doi.org/10.1371/journal.pone.0151057

43. Motilva, M. J., Serra, A., & Rubió, L. (2015). Nutrikinetic studies of food bioactive compounds: from in vitro to in vivo approaches. International Journal of Food Sciences and Nutrition, 66, 41-52. https://doi.org/10.3109/09637486.2015.1025721

44. Nicolescu, A., Babotă, M., Barros, L., Rocchetti, G., Lucini, L., Tanase, C., Mocan, A., Bunea, C. I., & Crișan, G. (2023) Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Frontiers in Nutrition, 10, 1184535. https://doi.org/10.3389/fnut.2023.1184535

45. Nikolic, M., Sustersic, T., & Filipovic, N. (2018). In vitro models and on-chip systems: Biomaterial Interaction studies with tissues generated using lung epithelial and liver metabolic cell lines. Frontiers in Bioengineering and Biotechnology, 6, 120. https://doi.org/10.3389/fbioe.2018.00120

46. Pandita, D., & Pandita, A. (2022). Omics technology for the promotion of nutraceuticals and functional foods. Frontiers in Physiology, 13, 817247. https://doi.org/10.3389/fphys.2022.817247

47. Singh, S., Kola, P., Kaur, D., Singla, G., Mishra, V., Panesar, P. S., Mallikarjunan, K., & Krishania, M. (2021). Therapeutic potential of nutraceuticals and dietary supplements in the prevention of viral diseases: A review. Frontiers in Nutrition, 8. 679312. https://doi.org/10.3389/fnut.2021.679312

48. Srinivasan, M. (2020). Foodomics: The what, why and how of it. In: Singh, S. (Eds.) Metagenomic Systems Biology. https://doi.org/10.1007/978-981-15-8562-3_9

49. Uthpala, T. G., Fernando, H. N., Thibbotuwawa, A., & Jayasinghe, M. (2020). Importance of nutrigenomics and nutrigenetics in food Science. MOJ Food Processing & Technology, 8(3), 114-119. https://doi.org/10.15406/mojfpt.2020.08.00250

50. Utkina, A. S., & Karagodin. V. P. (2021). Nutrigenomics as a tool for optimizing the composition of specialized food products by the efficiency criterion. IOP Conference Series: Earth and Environmental Science, 677(4), 042050.

51. Utkina, A. S., Karagodin, V .P., Agapkin, A. M., & Kotelevtsev, S. V. (2021). Genotoxicants in marine and freshwater fish of the Barents Sea Basin. IOP Conf. Series: Earth and Environmental Science, 677, 052110. https://doi.org/10.1088/1755-1315/677/5/052110

52. Van Steenwijk, H. P., Bast, A., & de Boer, A. (2021). Immunomodulating effects of fungal beta-glucans: From traditional use to medicine. Nutrients, 13, 1333. https://doi.org/10.3390/nu13041333

53. Wei, G., & Martirosyan, D. (2019). Hair loss: A review of the role of food bioactive compounds. Bioactive Compounds in Health and Disease, 2(5), 94-125. https://doi.org/10.31989/bchd.v2i5.610

54. Yasmeen, R., Fukagawa, N. K., & Wang T. T. (2017). Establishing health benefits of bioactive food components: A basic research scientist’s perspective. Current Opinion in Biotechnology, 44(Suppl. 1), 109-114. https://doi.org/10.1016/j.copbio.2016.11.016

55. Zahedipour, F., Hosseini, S. A., Sathyapalan, T., Majeed, M., & Jamialahmadi, T. (2020). Potential effects of curcumin in the treatment of COVID-19 infection. Phytotherapy Research, 34, 2911–20. https://doi.org/10.1002/ptr.6738

56. Zong, J., & Martirosyan, D. M. (2018). Anticancer effects of garlic and garlic-derived bioactive compounds and its potential status as functional food. Bioactive Compounds in Health and Disease, 1(2), 16-35. https://doi.org/10.2174/187152011795347441


Supplementary files

Review

For citations:


Utkina A.S., Molodkina P.G., Karagodin V.P. Realization of the Therapeutic and Preventive Potential of Health–Improving Food Products — Focus on Effectiveness (Review of Research Methodology). Health, Food & Biotechnology. 2024;6(1). (In Russ.) https://doi.org/10.36107/hfb.2024.i1.s199

Views: 334


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)