Применение обработки низкотемпературной плазмой в пищевых производствах для интенификации технологических процессов и повышения качества продукции
https://doi.org/10.36107/hfb.2024.i2.s217
Аннотация
Введение. Интенсификация технологических процессов является актуальной задачей в пищевых производствах. Одним из способов ее решения является применение прогрессивных приемов, в том числе, базирующихся на обработке низкотемпературной плазмой. Анализ публикаций, посвященных данному технологическому приему, позволил выявить спектр проблем, которые могут быть устранены за счет воздействия холодной плазмой, показать преимущества и ограничения этого метода.
Цель. Анализ информации о целях, режимах и результатах применения прямого и опосредованного воздействия атмосферной плазмой на объекты и процессы пищевых производств.
Материалы и методы. При подготовке обзора использовали рецензируемые статьи, опубликованные в период с 2001 по 2023 год на английском языке. Была проанализирована информация 128 источников в изданиях, индексируемых в зарубежных и отечественных базах данных Scopus, Web of Science, eLibrary (РИНЦ), в социальной сети ResearchGate, архивах журналов Innovative Food Science & Emerging Technologies, Journal of the Institute of Brewing, Applied Biochemistry and Microbiology, Kvasny prumysl, Foods and raw materials, Хранение и переработка сельхозсырья, Пиво и напитки, Вестник ВГУИТ, Вестник биотехнологии и физико-химической биологии имени Ю. А. Овчинникова. На базе первичного анализа по ключевым словам были отобраны 74 источника для дальнейшего детального исследования.
Результаты. Анализ информации позволил заключить, что применение низкотемпературной плазмы является многофакторным воздействием на обрабатываемые объекты, так как плазма является не только ионизированным газом, но и источником ультрафиолетового излучения, тепла и электрически заряженных частиц. Изучаемый способ воздействия позволяет подавлять нежелательную грибную и бактериальную микрофлору и даже вирусы, интенсифицировать экстракцию целевых компонентов сырья, инактивировать нежелательные ферменты и, напротив, повышать активности нужных биокатализаторов, улучшать функционально-технологические свойства сырья, полупродуктов и их отдельных компонентов, снижать содержание микотоксинов. Отмечены существующие ограничения применения атмосферной плазмой, обусловленные недостатком информации о вызываемых ею изменениях химического состава пищевого продукта и его органолептических характеристик, потенциальным накоплением ксенобиотиков в результате разрушения микробных клеток, а также отсутствием единого принципа разработки устройств для генерации плазмы и параметров ее применения.
Выводы. Обработка низкотемпературной плазмой может быть эффективным инструментом решения широкого спектра задач в пищевых технологиях, однако для ее внедрения в индустриальном масштабе требуется отработка режимов ее проведения, применение рационального оборудования и доказательства отсутствия негативных последствий применения такого приема в рамках конкретной технологии.
Об авторах
Дмитрий Валерьевич КарпенкоРоссия
Технология бродильных производств и виноделия
д.т.н., профессор, профессор кафедры
7628-4311
Артём Геннадиевич Гришин
Россия
Технология бродильных производств и виноделия
старший преподаватель
Список литературы
1. Amini, M., & Ghoranneviss, M. (2016). Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT - Food Science and Technology, 73, 178–184. https://doi.org/10.1016/j.lwt.2016.06.014
2. Andreou, A., Giannoglou, M., Xanthou, M.-Z., Passaras, D., Kokkoris, G., Εvangelos Gogolides, E., & Katsaros, G. (2023). Inactivation of pectinmethylesterase in fresh orange juice by cold atmospheric plasma technology: A kinetic study. Innovative Food Science & Emerging Technologies, 86:103361. https://doi.org/10.1016/j.ifset.2023.103361
3. Baier, M., Görgen, M., Ehlbeck, J., Knorr, D., Herppich, W. B., & Schlüter, O. (2014). Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innovative Food Science & Emerging Technologies, 22, 147–157. https://doi.org/10.1016/j.ifset.2014.01.011
4. Bahrami, N., Bayliss, D., Chope, G., Penson, S., Perehinec, T., & Fisk, I. D. (2016). Cold plasma: A new technology to modify wheat flour functionality. Food Chemistry, 202(1), 247–253. https://doi.org/10.1016/j.foodchem.2016.01.113
5. Bartoš, P., Kříž, P., Havelka, Z., Bohatá, A., Olšan, P., Špatenka, P., Čurn, V., & Dienstbier, M. (2017). Plasma technology in food industry: mini-review. Kvasny Prumysl, 63(3): 134–138. https://doi.org/10.18832/kp201716
6. Běláková, S., Havelka, Z., Bohatá, A., Hartman, I., Kábelová, H., Kříž, P., Dienstbier, M., Bartoš, P.,& Špatenka, P. (2018). The effect of treatment of barley grain and malt with low-temperature plasma discharge on the malt gushing potential. Kvasny Prumysl, 64(6), 314–317. https://doi.org/10.18832/kp201837
7. Bermudez-Aguirre, D., Wemlinger, E., Pedrow, P., Barbosa-Cánovas, G., & Garcia-Perez, M. (2013). Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce, Food Control, 34(1), 149–157. https://doi.org/10.1016/j.foodcont.2013.04.022
8. Bu, F., Feyzi, S., Nayak, G., Mao, Q., Santosh K. Kondeti, V. S., Bruggeman, P., Chen, C., & Ismail, B. P. (2023). Investigation of novel cold atmospheric plasma sources and their impact on the structural and functional characteristics of pea protein. Innovative Food Science & Emerging Technologies, 83:103248. https://doi.org/10.1016/j.ifset.2022.103248
9. Bursać Kovačević, D., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Režek Jambrak, A., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317–323. https://doi.org/10.1016/j.foodchem.2015.05.099
10. Bußler, S., Herppich, W.B., Neugart, S., Schreiner, M., Ehlbeck, J., Rohn, S., & Schlüter, O. (2015). Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum “Salamanca”). Food Research International, 76, 132-141. https://doi.org/10.1016/j.foodres.2015.03.045
11. Chanioti, S., Giannoglou, M., Stergiou, P., Passaras, D., Dimitrakellis, P., Kokkoris, G., Gogolides, E., & Katsaros, G. (2023). Plasma-activated water for disinfection and quality retention of sea bream fillets: Kinetic evaluation and process optimization. Innovative Food Science & Emerging Technologies, 85:103334. https://doi.org/10.1016/j.ifset.2023.103334
12. Dasan, B. G., Boyaci, I. H., & Mutlu, M. (2016). Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control, 70, 1–8. https://doi.org/10.1016/j.foodcont.2016.05.015
13. Durek, J., Fröhling, A., Bußler, S., Hase, A., Ehlbeck, J., & Schlüter, O. K. (2022). Pilot-scale generation of plasma processed air and its influence on microbial count, microbial diversity, and selected quality parameters of dried herbs. Innovative Food Science & Emerging Technologies, 75:102890. https://doi.org/10.1016/j.ifset.2021.102890
14. Ehlbeck, J., Schnabel, U., Andrasch, M., Stachowiak, J., Stolz, N., Fröhling, A., Schlüter, O., & Weltmann, K. D. (2015). Plasma treatment of food. Contributions to Plasma Physics, 55(10), 753-757. https://doi.org/10.1002/ctpp.201510013
15. Hou, X., Wang, J., Mei, Y., Ge, L., Qian, J., Huang, Y., Yang, M., Li, H., Wang, Y., Yan, Z., Peng, D., Zhang, J., & Zhao, N. (2023). Antibiofilm mechanism of dielectric barrier discharge cold plasma against Pichia manshurica. Innovative Food Science & Emerging Technologies, 85:103340. https://doi.org/10.1016/j.ifset.2023.103340
16. Illera, A. E., Souza, V. R., Nikmaram, N., Tang, L., Keener, K. M. (2022). High voltage atmospheric cold plasma decontamination of Salmonella enteritidis on chicken eggs. Innovative Food Science & Emerging Technologies, 82:103210. https://doi.org/10.1016/j.ifset.2022.103210
17. Jaddu, S., Pradhan, R. C., & Dwivedi, M. (2022). Effect of multipin atmospheric cold plasma discharge on functional properties of little millet (Panicum miliare) flour. Innovative Food Science & Emerging Technologies, 77:102957. https://doi.org/10.1016/j.ifset.2022.102957
18. Jeon, Y. J., Lee, H., & Min, S. C. (2023). Effects of in-package atmospheric dielectric barrier discharge cold plasma treatment on the antimicrobial efficacy of whey protein isolate-based edible films that incorporate malic acid against Salmonella in chicken breast processed meat. Innovative Food Science & Emerging Technologies, 85:103339. https://doi.org/10.1016/j.ifset.2023.103339
19. Joy, J. K., Kalaivendan, R. G. T., Eazhumalai, G., Kahar, S. P., & Annapure, U. S. (2022). Effect of pin-to-plate atmospheric cold plasma on jackfruit seed flour functionality modification. Innovative Food Science & Emerging Technologies, 78:103009. https://doi.org/10.1016/j.ifset.2022.103009
20. Katsaros, G., Giannoglou, M., Chanioti, S., Roufou, S., Javaheri, A., de Oliveira Mallia, J., Gatt, R., Agalou, A., Beis, D., & Valdramidis, V. (2023). Production, characterization, microbial inhibition, and in vivo toxicity of cold atmospheric plasma activated water. Innovative Food Science & Emerging Technologies, 84:103265. https://doi.org/10.1016/j.ifset.2022.103265
21. Katsigiannis, A. S., Hojnik, N., Modic, M., Bayliss, D. L., Kovač, J., & Walsh, J. L. (2022). Continuous in-line decontamination of food-processing surfaces using cold atmospheric pressure air plasma. Innovative Food Science & Emerging Technologies, 81:103150. https://doi.org/10.1016/j.ifset.2022.103150
22. Khoshkalam Pour, A., Khorram, S., Ehsani, A., Ostadrahimi, A., & Ghasempour, Z. (2022). Atmospheric cold plasma effect on quality attributes of banana slices: Its potential use in blanching process. Innovative Food Science & Emerging Technologies, 76:102945. https://doi.org/10.1016/j.ifset.2022.102945
23. Kim, Y. H., Lee, C., Lee, S.-J., & Yoon, K. S. (2022). Reduction of E. coli O157: H7 and Bacillus cereus levels in red pepper powder using dielectric barrier discharge (DBD) plasma for enhanced quality. Innovative Food Science & Emerging Technologies, 76:102916. https://doi.org/10.1016/j.ifset.2022.102916
24. Kim, B., Yun, H., Jung, S., Jung, Y., Jung, H., Choe, W., & Jo, C. (2011). Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiology, 28(1), 9–13. https://doi.org/10.1016/j.fm.2010.07.022
25. Konvalina, P., Štěrba, Z., Vlášek, O., Moudrý, jr., J., Capouchová, I., & Stehno, Z. (2016). Fusarium spp. occurrence in grains of ancient wheat species. Romanian Agricultural Research, 33, 307-311.
26. Kříž, P., Bartoš, P., Havelka, Z., Kadlec, J., Olšan, P., Špatenka, P., & Dienstbier, M. (2015). Influence of plasma treatment in open air on mycotoxin content and grain nutriments. Plasma medicine, 5(2), 145–158. https://doi.org/10.1615/plasmamed.2016015752
27. Kumar, S., Pipliya, S., & Srivastav, P. P. (2023). nth order kinetic modelling of peroxidase and polyphenol oxidase inactivation in kiwifruit juice during cold plasma and thermal treatment. Innovative Food Science & Emerging Technologies, 89:103475. https://doi.org/10.1016/j.ifset.2023.103475
28. Lee, H. J., Jung, H., Choe, W., Ham, J. S., Lee, J. H., & Jo, C. (2011). Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiology, 28(8), 1468–1471. https://doi.org/10.1016/j.fm.2011.08.002
29. Lee, K. H., Kim, H. J., Woo, K. S., Jo, C., Kim, J. K., Kim, S. H., Park, H. Y., Oh, S. K., & Kim, W. H. (2016). Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT - Food Science and Technology, 73, 442–447. https://doi.org/10.1016/j.lwt.2016.06.055
30. Li, J., Li, Z., Ma, O., & Zhou, Y. (2023). Enhancement of anthocyanins extraction from haskap by cold plasma pretreatment. Innovative Food Science & Emerging Technologies, 84:103294. https://doi.org/10.1016/j.ifset.2023.103294
31. Li, S., Yao, X., Wang, X., Tian, S., Zhang, Y. (2022). Reactive molecular dynamics simulation on degradation of aflatoxin B1 by cold atmospheric plasmas. Innovative Food Science & Emerging Technologies, 80:103101. https://doi.org/10.1016/j.ifset.2022.103101
32. Lin, C.-M., Kumar Patel, A., Chiu, Y.-C., Hou, C.-Y., Kuo, C.-H., Dong, C.-D., & Chen, H.-L. (2022). The application of novel rotary plasma jets to inhibit the aflatoxin-producing Aspergillus flavus and the spoilage fungus, Aspergillus niger on peanuts. Innovative Food Science & Emerging Technologies, 78:102994. https://doi.org/10.1016/j.ifset.2022.102994
33. Maeda, K., Toyokawa, Y., Shimizu, N., Imanishi, Y., & Sakudo, A. (2015). Inactivation of Salmonella by nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply. Food Control, 52, 54–59. https://doi.org/10.1016/j.foodcont.2014.12.012
34. Malachová, A., Hajšlová, J., Ehrenbergerová, J., Kostelanská, M., Zachariášová, M., Urbanová, J., Cerkal, R., Šafránková, I., Marková, J., Vaculová, K., & Hrstková, P. (2010). Fusarium mycotoxins in spring barley and their transfer into malt. Kvasny Prumysl, 56(3), 131–137. https://doi.org/10.1002/jsfa.4112
35. Mehta, D., Purohit, A., Bajarh, P., Yadav, K., Shivhare, U. S., & Yadav, S. K. (2022). Cold plasma processing improved the extraction of xylooligosaccharides from dietary fibers of rice and corn bran with enhanced in-vitro digestibility and anti-inflammatory responses. Innovative Food Science & Emerging Technologies, 78:103027. https://doi.org/10.1016/j.ifset.2022.103027
36. Misra, N. N., Keener, K. M., Bourke, P., Mosnier, J. P., & Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of Bioscience and Bioengineering, 118(2), 177–182. https://doi.org/10.1016/j.jbiosc.2014.02.005
37. Misra, N. N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J. P., Keener, K. M., Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering, 125, 131–138. https://doi.org/10.1016/j.jfoodeng.2013.10.023
38. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., & Yahia, L. (2001). Low-temperature sterilization using gas plasmas: a review of the experiment and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics, 226(1-2), 1-21. https://doi.org/10.1016/S0378-5173(01)00752-9
39. Molina-Hernandez, J. B., Capelli, F., Laurita, R., Tappi, S., Laika, J., Gioia, L., Valbonetti, L., Chaves-López, C. (2022). A comparative study on the antifungal efficacy of cold atmospheric plasma at low and high surface density on Aspergillus chevalieri and mechanisms of action. Innovative Food Science & Emerging Technologies, 82:103194. https://doi.org/10.1016/j.ifset.2022.103194
40. Molina-Hernandez, J. B., Landi, L., De Flaviis, R., Laika, J., Romanazzi, G., & Chaves-Lopez, C. (2023). Understanding the mechanisms of action of atmospheric cold plasma towards the mitigation of the stress induced in molds: The case of Aspergillus chevalieri. Innovative Food Science & Emerging Technologies, 90:103492, https://doi.org/10.1016/j.ifset.2023.103492
41. Nagl, V., & Schatzmayr, G. (2015). Deoxynivalenol and its masked forms in food and feed. Current Opinion in Food Science, 5, 43-49. https://doi.org/10.1016/j.cofs.2015.08.001
42. Naïtali, M., Herry, J. M., Hnatiuc, E., Kamgang, G., & Brisset, J. L. (2012). Kinetics and bacterial inactivation induced by peroxynitrite in electric discharges in air. Plasma Chemistry and Plasma Processing, 32, 675–692. https://doi.org/10.1007/s11090-012-9383-y
43. Oh, Y. A., Roh, S. H., & Min, S. C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocolloids, 58(2), 150–159. https://doi.org/10.1016/j.foodhyd.2016.02.022
44. Palabiyik, I., Kopuk, B., Konar, N., & Toker, O. S. (2023). Investigation of cold plasma technique as an alternative to conventional alkalization of cocoa powders. Innovative Food Science & Emerging Technologies, 88:103440. https://doi.org/10.1016/j.ifset.2023.103440
45. Pasquali, F., Stratakos, A.C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G., & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control, 60, 552–559. https://doi.org/10.1016/j.foodcont.2015.08.043
46. Perni, S., Liu, D., Shama, G., & Kong, M. (2008). Cold atmospheric plasma decontamination of the pericarps of fruit. Journal of food protection, 71(2), 302-308. https://doi.org/10.4315/0362-028X-71.2.302
47. Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G., & Rocculi, P. (2015). Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology, 107(4), 55–65. https://doi.org/10.1016/j.postharvbio.2015.04.008
48. Ramos, B., Miller, F. A., Brandão, T. R. S., Teixeira, P., & Silva, C. L. M. (2013). Fresh fruits and vegetables - An overview on applied methodologies to improve its quality and safety. Innovative Food Science & Emerging Technologies, 20, 1–15. https://doi.org/10.1016/j.ifset.2013.07.002
49. Ragni, L., Berardinelli, A., Vannini, L., Montanari, C., Sirri, F., Guerzoni, M.E., & Guarnieri, A. (2010). Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. Journal of Food Engineering, 100(1), 125–132. https://doi.org/10.1016/j.jfoodeng.2010.03.036
50. Ricciardi, E. F., Del Nobile, M. A., Conte, A., Fracassi, F., & Sardella, E. (2022). Effects of plasma treatments applied to fresh ricotta cheese. Innovative Food Science & Emerging Technologies, 76:102935. https://doi.org/10.1016/j.ifset.2022.102935
51. Rivero, W. C., Wang, Q., Salvi, D. (2022). Impact of plasma-activated water washing on the microbial inactivation, color, and electrolyte leakage of alfalfa sprouts, broccoli sprouts, and clover sprouts. Innovative Food Science & Emerging Technologies, 81:103123. https://doi.org/10.1016/j.ifset.2022.103123
52. Rout, S., & Srivastav, P. P. (2023). Effect of cold plasma on the technological and functional modification of plant proteins and enzymes. Innovative Food Science & Emerging Technologies, 88:103447. https://doi.org/10.1016/j.ifset.2023.103447
53. Rød, S. K., Hansen, F., Leipold, F., & Knøchel, S. (2012). Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality. Food Microbiology, 30(1), 233–238. https://doi.org/10.1016/j.fm.2011.12.018
54. Shen, H., Ge, X., Zhang, Q., Zhang, X., Lu, Y., Jiang, H., Zhang, G., & Li, W. (2022). Dielectric barrier discharge plasma improved the fine structure, physicochemical properties and digestibility of α-amylase enzymatic wheat starch. Innovative Food Science & Emerging Technologies, 78:102991. https://doi.org/10.1016/j.ifset.2022.102991
55. Song, H. P., Kim, B., Choe, J. H., Jung, S., Moon, S. Y., Choe, W., & Jo, C. (2009). Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiology, 26(4), 432–436. https://doi.org/10.1016/j.fm.2009.02.010
56. Sudarsan, A., & Keener, K. (2022). Inactivation of spoilage organisms on baby spinach leaves using high voltage atmospheric cold plasma (HVACP) and assessment of quality. Innovative Food Science & Emerging Technologies, 79:103023. https://doi.org/10.1016/j.ifset.2022.103023
57. Tappi, S., Nissen, L., Casciano, F., Antonelli, G., Chiarello, E., Picone, G., Laurita, R., Capelli, F., Gherardi, M., Maccaferri, C., Gianotti, A., Bordoni, A., Espmark, Å. M., Capozzi, F., & Rocculi, P. (2023). Effect of cold plasma generated with different gas mixtures on safety, quality and nutritional aspects of fresh sea bream fillets. Innovative Food Science & Emerging Technologies, 89:103477. https://doi.org/10.1016/j.ifset.2023.103477
58. Tappi, S., Ramazzina, I., Rizzi, F., Sacchetti, G., Ragni, L., & Rocculi, P. (2018). Effect of plasma exposure time on the polyphenolic profile and antioxidant activity of fresh-cut apples. Applied Sciences, 8(10):1939. https://doi.org/10.3390/app8101939
59. Velebit, B., Milojević, L., Baltić, T., Grković, N., Gummalla, S., Velebit, M., Škoko, I, Mojsova, S., Putnik, P. (2022). Efficacy of cold atmospheric plasma for inactivation of viruses on raspberries. Innovative Food Science & Emerging Technologies, 81:103121. https://doi.org/10.1016/j.ifset.2022.103121
60. Wang, J., Zhuang, H., Hinton, A., Zhang, J. (2016). Influence of in-package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets. Food Microbiology, 60(1), 142–146. https://doi.org/10.1016/j.fm.2016.07.007
61. Wang, Q., Lavoine, N., & Salvi, D. (2023). Cold atmospheric pressure plasma for the sanitation of conveyor belt materials: Decontamination efficacy against adherent bacteria and biofilms of Escherichia coli and effect on surface properties. Innovative Food Science & Emerging Technologies, 84:103260. https://doi.org/10.1016/j.ifset.2022.103260
62. Wang, T., Li, N., Luo, S., Wang, L., Jiang, L., Yu, D., & Han, C. (2022). Catalyst activation by cold plasma technology and its effect on isomerization of safflower seed oil. Innovative Food Science & Emerging Technologies, 76:102942. https://doi.org/10.1016/j.ifset.2022.102942
63. Wang, Z., Zhao, Q., Gan, Y., Fan, Q., Hu, Z., Wang, Z., Cai, R., Yue, T., & Yuan, Y. (2023). Inactivation of Alicyclobacillus contaminans spores by dielectric barrier discharge plasma and its biological mechanism. Innovative Food Science & Emerging Technologies, 87:103415. https://doi.org/10.1016/j.ifset.2023.103415
64. Wongjaikham, W., Kongprawes, G., Wongsawaeng, D., Ngaosuwan, K., Kiatkittipong, W., Hosemann, P., & Assabumrungrat, S. (2022). Production of low trans-fat margarine by partial hydrogenation of palm oil using nature-friendly and catalyst-free microwave plasma technique. Innovative Food Science & Emerging Technologies, 80:103107. https://doi.org/10.1016/j.ifset.2022.103107
65. Wu, Q., Shen, C., Li, J., Wu, D., & Chen, K. (2022). Application of indirect plasma-processed air on microbial inactivation and quality of yellow peaches during storage. Innovative Food Science & Emerging Technologies, 79:103044. https://doi.org/10.1016/j.ifset.2022.103044
66. Xiao, H., Zhang, S., Xi, F., Yang, W., Zhou, L., Zhang, G., Zhu, H., & Zhang, Q. (2023). Preservation effect of plasma-activated water (PAW) treatment on fresh walnut kernels. Innovative Food Science & Emerging Technologies, 85:103304. https://doi.org/10.1016/j.ifset.2023.103304
67. Xu, P., & Tan, J. (2023). Inactivation and removal of Klebsiella michiganensis biofilm attached to the inner surfaces of piping by plasma-activated microbubble water (PMBW). Innovative Food Science & Emerging Technologies, 86:103360. https://doi.org/10.1016/j.ifset.2023.103360
68. Yang, T., Wang, Y., Yang, B., Zhang, Y., Wang, J., Qiang, S., Zhou, J., Li, S., & Chen, Y. (2023). Thin sheets of bean curd treated by cold plasma: Changes in surface structure and physicochemical properties. Innovative Food Science & Emerging Technologies, 84:103288. https://doi.org/10.1016/j.ifset.2023.103288
69. Zahoranová, A., Henselová, M., Hudecová, D., Kaliňáková, B., Kováčik, D., Medvecká, V., & Černák, M. (2016). Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chemistry and Plasma Processing, 36(2), 397–414. https://doi.org/10.1007/s11090-015-9684-z
70. Zhao, S.-Q., Chen, L., Yan, B., Wang, L.-H., Zeng, X.-A., & Aadil, R. M. (2023). Inactivation of Alicyclobacillus acidoterrestris vegetative cells and spores induced by atmospheric cold plasma. Innovative Food Science & Emerging Technologies, 89:103461. https://doi.org/10.1016/j.ifset.2023.103461
71. Zhao, Y., Shao, L., Jia, L., Zou, B., Dai, R., Li, X., & Jia, F. (2022). Inactivation effects, kinetics and mechanisms of air- and nitrogen-based cold atmospheric plasma on Pseudomonas aeruginosa. Innovative Food Science & Emerging Technologies, 79:103051. https://doi.org/10.1016/j.ifset.2022.103051
72. Zhi, A., Shi, S., Li, Q., Shen, F., He, X., Fang, Y., Hu, Q., & Jiang, X. (2023). Aflatoxins degradation and quality evaluation in naturally contaminated rice by dielectric barrier discharge cold plasma. Innovative Food Science & Emerging Technologies, 88:103426. https://doi.org/10.1016/j.ifset.2023.103426
73. Zhu, W., Tan, G., Han, M., Bu, Y., Li, X., & Li, J. (2023). Evaluating the effects of plasma-activated slightly acidic electrolyzed water on bacterial inactivation and quality attributes of Atlantic salmon fillets. Innovative Food Science & Emerging Technologies, 84:103286. https://doi.org/10.1016/j.ifset.2023.103286
74. Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M., Bourke, P. (2014). Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 42, 109–116. https://doi.org/10.1016/j.fm.2014.02.007
Рецензия
Для цитирования:
Карпенко Д.В., Гришин А.Г. Применение обработки низкотемпературной плазмой в пищевых производствах для интенификации технологических процессов и повышения качества продукции. Health, Food & Biotechnology. 2024;6(2). https://doi.org/10.36107/hfb.2024.i2.s217
For citation:
Karpenko D.V., Grishin A.G. Application of Low-Temperature Plasma Treatment in Food Production to Intensify Technological Processes and Improve Product Quality. Health, Food & Biotechnology. 2024;6(2). (In Russ.) https://doi.org/10.36107/hfb.2024.i2.s217