Preview

Health, Food & Biotechnology

Advanced search

Application of Low-Temperature Plasma Treatment in Food Production to Intensify Technological Processes and Improve Product Quality

https://doi.org/10.36107/hfb.2024.i2.s217

Abstract

Introduction. Intensification of technological processes is an urgent task in food production. One of the ways to solve this problem is to use progressive techniques, including those based on low-temperature plasma treatment. An analysis of publications devoted to this technological technique made it possible to identify a range of problems that can be eliminated by exposure to cold plasma and to show the advantages and limitations of this method.

Purpose. Analysis of information on the purposes, modes and results of the use of direct and indirect treatment by atmospheric plasma on objects and processes of food production.

Materials and Methods. To prepare the review, we used peer-reviewed articles published between 2001 and 2023 in English. Information from 128 sources was analyzed in publications indexed in foreign and domestic databases Scopus, Web of Science, eLibrary (RISC), in the ResearchGate social network, archives of the journals Innovative Food Science & Emerging Technologies, Journal of the Institute of Brewing, Applied Biochemistry and Microbiology, Kvasny prumysl, Foods and raw materials, Storage and processing of agricultural raw materials, Beer and drinks, VSUIT Bulletin, Bulletin of biotechnology and physical and chemical biology named after Yu. A. Ovchinnikov. Based on the primary analysis, 74 sources were selected using keywords for further detailed research.

Results. Analysis of the information allowed us to conclude that the use of low-temperature plasma is a multifactorial effect on the objects being processed, since plasma is not only an ionized gas, but also a source of ultraviolet radiation, heat and electrically charged particles. The studied method of influence makes it possible to suppress undesirable fungal and bacterial microflora and even viruses, intensify the extraction of target components of raw materials, inactivate undesirable enzymes and, on the contrary, increase the activity of the necessary biocatalysts, improve the functional and technological properties of raw materials, intermediates and their individual components, and reduce the content of mycotoxins. The existing limitations of the use of atmospheric plasma are noted, due to the lack of information about the changes it causes in the chemical composition of the food product and its organoleptic characteristics, the potential accumulation of xenobiotics as a result of the destruction of microbial cells, as well as the lack of a unified principle for the development of devices for generating plasma and parameters for its use.

Conclusions. Low-temperature plasma treatment can be an effective tool for solving a wide range of problems in food technology, but its implementation on an industrial scale requires development of its implementation modes, the use of rational equipment and proof of the absence of negative consequences of using such a technique within a specific technology.

About the Authors

Dmitry V. Karpenko
Russian Biotechnological University (BIOTECH University)
Russian Federation


Artem G. Grishin
Russian Biotechnological University (BIOTECH University)
Russian Federation


References

1. Amini, M., & Ghoranneviss, M. (2016). Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT - Food Science and Technology, 73, 178–184. https://doi.org/10.1016/j.lwt.2016.06.014

2. Andreou, A., Giannoglou, M., Xanthou, M.-Z., Passaras, D., Kokkoris, G., Εvangelos Gogolides, E., & Katsaros, G. (2023). Inactivation of pectinmethylesterase in fresh orange juice by cold atmospheric plasma technology: A kinetic study. Innovative Food Science & Emerging Technologies, 86:103361. https://doi.org/10.1016/j.ifset.2023.103361

3. Baier, M., Görgen, M., Ehlbeck, J., Knorr, D., Herppich, W. B., & Schlüter, O. (2014). Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innovative Food Science & Emerging Technologies, 22, 147–157. https://doi.org/10.1016/j.ifset.2014.01.011

4. Bahrami, N., Bayliss, D., Chope, G., Penson, S., Perehinec, T., & Fisk, I. D. (2016). Cold plasma: A new technology to modify wheat flour functionality. Food Chemistry, 202(1), 247–253. https://doi.org/10.1016/j.foodchem.2016.01.113

5. Bartoš, P., Kříž, P., Havelka, Z., Bohatá, A., Olšan, P., Špatenka, P., Čurn, V., & Dienstbier, M. (2017). Plasma technology in food industry: mini-review. Kvasny Prumysl, 63(3): 134–138. https://doi.org/10.18832/kp201716

6. Běláková, S., Havelka, Z., Bohatá, A., Hartman, I., Kábelová, H., Kříž, P., Dienstbier, M., Bartoš, P.,& Špatenka, P. (2018). The effect of treatment of barley grain and malt with low-temperature plasma discharge on the malt gushing potential. Kvasny Prumysl, 64(6), 314–317. https://doi.org/10.18832/kp201837

7. Bermudez-Aguirre, D., Wemlinger, E., Pedrow, P., Barbosa-Cánovas, G., & Garcia-Perez, M. (2013). Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce, Food Control, 34(1), 149–157. https://doi.org/10.1016/j.foodcont.2013.04.022

8. Bu, F., Feyzi, S., Nayak, G., Mao, Q., Santosh K. Kondeti, V. S., Bruggeman, P., Chen, C., & Ismail, B. P. (2023). Investigation of novel cold atmospheric plasma sources and their impact on the structural and functional characteristics of pea protein. Innovative Food Science & Emerging Technologies, 83:103248. https://doi.org/10.1016/j.ifset.2022.103248

9. Bursać Kovačević, D., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Režek Jambrak, A., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317–323. https://doi.org/10.1016/j.foodchem.2015.05.099

10. Bußler, S., Herppich, W.B., Neugart, S., Schreiner, M., Ehlbeck, J., Rohn, S., & Schlüter, O. (2015). Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum “Salamanca”). Food Research International, 76, 132-141. https://doi.org/10.1016/j.foodres.2015.03.045

11. Chanioti, S., Giannoglou, M., Stergiou, P., Passaras, D., Dimitrakellis, P., Kokkoris, G., Gogolides, E., & Katsaros, G. (2023). Plasma-activated water for disinfection and quality retention of sea bream fillets: Kinetic evaluation and process optimization. Innovative Food Science & Emerging Technologies, 85:103334. https://doi.org/10.1016/j.ifset.2023.103334

12. Dasan, B. G., Boyaci, I. H., & Mutlu, M. (2016). Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control, 70, 1–8. https://doi.org/10.1016/j.foodcont.2016.05.015

13. Durek, J., Fröhling, A., Bußler, S., Hase, A., Ehlbeck, J., & Schlüter, O. K. (2022). Pilot-scale generation of plasma processed air and its influence on microbial count, microbial diversity, and selected quality parameters of dried herbs. Innovative Food Science & Emerging Technologies, 75:102890. https://doi.org/10.1016/j.ifset.2021.102890

14. Ehlbeck, J., Schnabel, U., Andrasch, M., Stachowiak, J., Stolz, N., Fröhling, A., Schlüter, O., & Weltmann, K. D. (2015). Plasma treatment of food. Contributions to Plasma Physics, 55(10), 753-757. https://doi.org/10.1002/ctpp.201510013

15. Hou, X., Wang, J., Mei, Y., Ge, L., Qian, J., Huang, Y., Yang, M., Li, H., Wang, Y., Yan, Z., Peng, D., Zhang, J., & Zhao, N. (2023). Antibiofilm mechanism of dielectric barrier discharge cold plasma against Pichia manshurica. Innovative Food Science & Emerging Technologies, 85:103340. https://doi.org/10.1016/j.ifset.2023.103340

16. Illera, A. E., Souza, V. R., Nikmaram, N., Tang, L., Keener, K. M. (2022). High voltage atmospheric cold plasma decontamination of Salmonella enteritidis on chicken eggs. Innovative Food Science & Emerging Technologies, 82:103210. https://doi.org/10.1016/j.ifset.2022.103210

17. Jaddu, S., Pradhan, R. C., & Dwivedi, M. (2022). Effect of multipin atmospheric cold plasma discharge on functional properties of little millet (Panicum miliare) flour. Innovative Food Science & Emerging Technologies, 77:102957. https://doi.org/10.1016/j.ifset.2022.102957

18. Jeon, Y. J., Lee, H., & Min, S. C. (2023). Effects of in-package atmospheric dielectric barrier discharge cold plasma treatment on the antimicrobial efficacy of whey protein isolate-based edible films that incorporate malic acid against Salmonella in chicken breast processed meat. Innovative Food Science & Emerging Technologies, 85:103339. https://doi.org/10.1016/j.ifset.2023.103339

19. Joy, J. K., Kalaivendan, R. G. T., Eazhumalai, G., Kahar, S. P., & Annapure, U. S. (2022). Effect of pin-to-plate atmospheric cold plasma on jackfruit seed flour functionality modification. Innovative Food Science & Emerging Technologies, 78:103009. https://doi.org/10.1016/j.ifset.2022.103009

20. Katsaros, G., Giannoglou, M., Chanioti, S., Roufou, S., Javaheri, A., de Oliveira Mallia, J., Gatt, R., Agalou, A., Beis, D., & Valdramidis, V. (2023). Production, characterization, microbial inhibition, and in vivo toxicity of cold atmospheric plasma activated water. Innovative Food Science & Emerging Technologies, 84:103265. https://doi.org/10.1016/j.ifset.2022.103265

21. Katsigiannis, A. S., Hojnik, N., Modic, M., Bayliss, D. L., Kovač, J., & Walsh, J. L. (2022). Continuous in-line decontamination of food-processing surfaces using cold atmospheric pressure air plasma. Innovative Food Science & Emerging Technologies, 81:103150. https://doi.org/10.1016/j.ifset.2022.103150

22. Khoshkalam Pour, A., Khorram, S., Ehsani, A., Ostadrahimi, A., & Ghasempour, Z. (2022). Atmospheric cold plasma effect on quality attributes of banana slices: Its potential use in blanching process. Innovative Food Science & Emerging Technologies, 76:102945. https://doi.org/10.1016/j.ifset.2022.102945

23. Kim, Y. H., Lee, C., Lee, S.-J., & Yoon, K. S. (2022). Reduction of E. coli O157: H7 and Bacillus cereus levels in red pepper powder using dielectric barrier discharge (DBD) plasma for enhanced quality. Innovative Food Science & Emerging Technologies, 76:102916. https://doi.org/10.1016/j.ifset.2022.102916

24. Kim, B., Yun, H., Jung, S., Jung, Y., Jung, H., Choe, W., & Jo, C. (2011). Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiology, 28(1), 9–13. https://doi.org/10.1016/j.fm.2010.07.022

25. Konvalina, P., Štěrba, Z., Vlášek, O., Moudrý, jr., J., Capouchová, I., & Stehno, Z. (2016). Fusarium spp. occurrence in grains of ancient wheat species. Romanian Agricultural Research, 33, 307-311.

26. Kříž, P., Bartoš, P., Havelka, Z., Kadlec, J., Olšan, P., Špatenka, P., & Dienstbier, M. (2015). Influence of plasma treatment in open air on mycotoxin content and grain nutriments. Plasma medicine, 5(2), 145–158. https://doi.org/10.1615/plasmamed.2016015752

27. Kumar, S., Pipliya, S., & Srivastav, P. P. (2023). nth order kinetic modelling of peroxidase and polyphenol oxidase inactivation in kiwifruit juice during cold plasma and thermal treatment. Innovative Food Science & Emerging Technologies, 89:103475. https://doi.org/10.1016/j.ifset.2023.103475

28. Lee, H. J., Jung, H., Choe, W., Ham, J. S., Lee, J. H., & Jo, C. (2011). Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiology, 28(8), 1468–1471. https://doi.org/10.1016/j.fm.2011.08.002

29. Lee, K. H., Kim, H. J., Woo, K. S., Jo, C., Kim, J. K., Kim, S. H., Park, H. Y., Oh, S. K., & Kim, W. H. (2016). Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT - Food Science and Technology, 73, 442–447. https://doi.org/10.1016/j.lwt.2016.06.055

30. Li, J., Li, Z., Ma, O., & Zhou, Y. (2023). Enhancement of anthocyanins extraction from haskap by cold plasma pretreatment. Innovative Food Science & Emerging Technologies, 84:103294. https://doi.org/10.1016/j.ifset.2023.103294

31. Li, S., Yao, X., Wang, X., Tian, S., Zhang, Y. (2022). Reactive molecular dynamics simulation on degradation of aflatoxin B1 by cold atmospheric plasmas. Innovative Food Science & Emerging Technologies, 80:103101. https://doi.org/10.1016/j.ifset.2022.103101

32. Lin, C.-M., Kumar Patel, A., Chiu, Y.-C., Hou, C.-Y., Kuo, C.-H., Dong, C.-D., & Chen, H.-L. (2022). The application of novel rotary plasma jets to inhibit the aflatoxin-producing Aspergillus flavus and the spoilage fungus, Aspergillus niger on peanuts. Innovative Food Science & Emerging Technologies, 78:102994. https://doi.org/10.1016/j.ifset.2022.102994

33. Maeda, K., Toyokawa, Y., Shimizu, N., Imanishi, Y., & Sakudo, A. (2015). Inactivation of Salmonella by nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply. Food Control, 52, 54–59. https://doi.org/10.1016/j.foodcont.2014.12.012

34. Malachová, A., Hajšlová, J., Ehrenbergerová, J., Kostelanská, M., Zachariášová, M., Urbanová, J., Cerkal, R., Šafránková, I., Marková, J., Vaculová, K., & Hrstková, P. (2010). Fusarium mycotoxins in spring barley and their transfer into malt. Kvasny Prumysl, 56(3), 131–137. https://doi.org/10.1002/jsfa.4112

35. Mehta, D., Purohit, A., Bajarh, P., Yadav, K., Shivhare, U. S., & Yadav, S. K. (2022). Cold plasma processing improved the extraction of xylooligosaccharides from dietary fibers of rice and corn bran with enhanced in-vitro digestibility and anti-inflammatory responses. Innovative Food Science & Emerging Technologies, 78:103027. https://doi.org/10.1016/j.ifset.2022.103027

36. Misra, N. N., Keener, K. M., Bourke, P., Mosnier, J. P., & Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of Bioscience and Bioengineering, 118(2), 177–182. https://doi.org/10.1016/j.jbiosc.2014.02.005

37. Misra, N. N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J. P., Keener, K. M., Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering, 125, 131–138. https://doi.org/10.1016/j.jfoodeng.2013.10.023

38. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., & Yahia, L. (2001). Low-temperature sterilization using gas plasmas: a review of the experiment and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics, 226(1-2), 1-21. https://doi.org/10.1016/S0378-5173(01)00752-9

39. Molina-Hernandez, J. B., Capelli, F., Laurita, R., Tappi, S., Laika, J., Gioia, L., Valbonetti, L., Chaves-López, C. (2022). A comparative study on the antifungal efficacy of cold atmospheric plasma at low and high surface density on Aspergillus chevalieri and mechanisms of action. Innovative Food Science & Emerging Technologies, 82:103194. https://doi.org/10.1016/j.ifset.2022.103194

40. Molina-Hernandez, J. B., Landi, L., De Flaviis, R., Laika, J., Romanazzi, G., & Chaves-Lopez, C. (2023). Understanding the mechanisms of action of atmospheric cold plasma towards the mitigation of the stress induced in molds: The case of Aspergillus chevalieri. Innovative Food Science & Emerging Technologies, 90:103492, https://doi.org/10.1016/j.ifset.2023.103492

41. Nagl, V., & Schatzmayr, G. (2015). Deoxynivalenol and its masked forms in food and feed. Current Opinion in Food Science, 5, 43-49. https://doi.org/10.1016/j.cofs.2015.08.001

42. Naïtali, M., Herry, J. M., Hnatiuc, E., Kamgang, G., & Brisset, J. L. (2012). Kinetics and bacterial inactivation induced by peroxynitrite in electric discharges in air. Plasma Chemistry and Plasma Processing, 32, 675–692. https://doi.org/10.1007/s11090-012-9383-y

43. Oh, Y. A., Roh, S. H., & Min, S. C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocolloids, 58(2), 150–159. https://doi.org/10.1016/j.foodhyd.2016.02.022

44. Palabiyik, I., Kopuk, B., Konar, N., & Toker, O. S. (2023). Investigation of cold plasma technique as an alternative to conventional alkalization of cocoa powders. Innovative Food Science & Emerging Technologies, 88:103440. https://doi.org/10.1016/j.ifset.2023.103440

45. Pasquali, F., Stratakos, A.C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G., & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control, 60, 552–559. https://doi.org/10.1016/j.foodcont.2015.08.043

46. Perni, S., Liu, D., Shama, G., & Kong, M. (2008). Cold atmospheric plasma decontamination of the pericarps of fruit. Journal of food protection, 71(2), 302-308. https://doi.org/10.4315/0362-028X-71.2.302

47. Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G., & Rocculi, P. (2015). Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology, 107(4), 55–65. https://doi.org/10.1016/j.postharvbio.2015.04.008

48. Ramos, B., Miller, F. A., Brandão, T. R. S., Teixeira, P., & Silva, C. L. M. (2013). Fresh fruits and vegetables - An overview on applied methodologies to improve its quality and safety. Innovative Food Science & Emerging Technologies, 20, 1–15. https://doi.org/10.1016/j.ifset.2013.07.002

49. Ragni, L., Berardinelli, A., Vannini, L., Montanari, C., Sirri, F., Guerzoni, M.E., & Guarnieri, A. (2010). Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. Journal of Food Engineering, 100(1), 125–132. https://doi.org/10.1016/j.jfoodeng.2010.03.036

50. Ricciardi, E. F., Del Nobile, M. A., Conte, A., Fracassi, F., & Sardella, E. (2022). Effects of plasma treatments applied to fresh ricotta cheese. Innovative Food Science & Emerging Technologies, 76:102935. https://doi.org/10.1016/j.ifset.2022.102935

51. Rivero, W. C., Wang, Q., Salvi, D. (2022). Impact of plasma-activated water washing on the microbial inactivation, color, and electrolyte leakage of alfalfa sprouts, broccoli sprouts, and clover sprouts. Innovative Food Science & Emerging Technologies, 81:103123. https://doi.org/10.1016/j.ifset.2022.103123

52. Rout, S., & Srivastav, P. P. (2023). Effect of cold plasma on the technological and functional modification of plant proteins and enzymes. Innovative Food Science & Emerging Technologies, 88:103447. https://doi.org/10.1016/j.ifset.2023.103447

53. Rød, S. K., Hansen, F., Leipold, F., & Knøchel, S. (2012). Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality. Food Microbiology, 30(1), 233–238. https://doi.org/10.1016/j.fm.2011.12.018

54. Shen, H., Ge, X., Zhang, Q., Zhang, X., Lu, Y., Jiang, H., Zhang, G., & Li, W. (2022). Dielectric barrier discharge plasma improved the fine structure, physicochemical properties and digestibility of α-amylase enzymatic wheat starch. Innovative Food Science & Emerging Technologies, 78:102991. https://doi.org/10.1016/j.ifset.2022.102991

55. Song, H. P., Kim, B., Choe, J. H., Jung, S., Moon, S. Y., Choe, W., & Jo, C. (2009). Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiology, 26(4), 432–436. https://doi.org/10.1016/j.fm.2009.02.010

56. Sudarsan, A., & Keener, K. (2022). Inactivation of spoilage organisms on baby spinach leaves using high voltage atmospheric cold plasma (HVACP) and assessment of quality. Innovative Food Science & Emerging Technologies, 79:103023. https://doi.org/10.1016/j.ifset.2022.103023

57. Tappi, S., Nissen, L., Casciano, F., Antonelli, G., Chiarello, E., Picone, G., Laurita, R., Capelli, F., Gherardi, M., Maccaferri, C., Gianotti, A., Bordoni, A., Espmark, Å. M., Capozzi, F., & Rocculi, P. (2023). Effect of cold plasma generated with different gas mixtures on safety, quality and nutritional aspects of fresh sea bream fillets. Innovative Food Science & Emerging Technologies, 89:103477. https://doi.org/10.1016/j.ifset.2023.103477

58. Tappi, S., Ramazzina, I., Rizzi, F., Sacchetti, G., Ragni, L., & Rocculi, P. (2018). Effect of plasma exposure time on the polyphenolic profile and antioxidant activity of fresh-cut apples. Applied Sciences, 8(10):1939. https://doi.org/10.3390/app8101939

59. Velebit, B., Milojević, L., Baltić, T., Grković, N., Gummalla, S., Velebit, M., Škoko, I, Mojsova, S., Putnik, P. (2022). Efficacy of cold atmospheric plasma for inactivation of viruses on raspberries. Innovative Food Science & Emerging Technologies, 81:103121. https://doi.org/10.1016/j.ifset.2022.103121

60. Wang, J., Zhuang, H., Hinton, A., Zhang, J. (2016). Influence of in-package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets. Food Microbiology, 60(1), 142–146. https://doi.org/10.1016/j.fm.2016.07.007

61. Wang, Q., Lavoine, N., & Salvi, D. (2023). Cold atmospheric pressure plasma for the sanitation of conveyor belt materials: Decontamination efficacy against adherent bacteria and biofilms of Escherichia coli and effect on surface properties. Innovative Food Science & Emerging Technologies, 84:103260. https://doi.org/10.1016/j.ifset.2022.103260

62. Wang, T., Li, N., Luo, S., Wang, L., Jiang, L., Yu, D., & Han, C. (2022). Catalyst activation by cold plasma technology and its effect on isomerization of safflower seed oil. Innovative Food Science & Emerging Technologies, 76:102942. https://doi.org/10.1016/j.ifset.2022.102942

63. Wang, Z., Zhao, Q., Gan, Y., Fan, Q., Hu, Z., Wang, Z., Cai, R., Yue, T., & Yuan, Y. (2023). Inactivation of Alicyclobacillus contaminans spores by dielectric barrier discharge plasma and its biological mechanism. Innovative Food Science & Emerging Technologies, 87:103415. https://doi.org/10.1016/j.ifset.2023.103415

64. Wongjaikham, W., Kongprawes, G., Wongsawaeng, D., Ngaosuwan, K., Kiatkittipong, W., Hosemann, P., & Assabumrungrat, S. (2022). Production of low trans-fat margarine by partial hydrogenation of palm oil using nature-friendly and catalyst-free microwave plasma technique. Innovative Food Science & Emerging Technologies, 80:103107. https://doi.org/10.1016/j.ifset.2022.103107

65. Wu, Q., Shen, C., Li, J., Wu, D., & Chen, K. (2022). Application of indirect plasma-processed air on microbial inactivation and quality of yellow peaches during storage. Innovative Food Science & Emerging Technologies, 79:103044. https://doi.org/10.1016/j.ifset.2022.103044

66. Xiao, H., Zhang, S., Xi, F., Yang, W., Zhou, L., Zhang, G., Zhu, H., & Zhang, Q. (2023). Preservation effect of plasma-activated water (PAW) treatment on fresh walnut kernels. Innovative Food Science & Emerging Technologies, 85:103304. https://doi.org/10.1016/j.ifset.2023.103304

67. Xu, P., & Tan, J. (2023). Inactivation and removal of Klebsiella michiganensis biofilm attached to the inner surfaces of piping by plasma-activated microbubble water (PMBW). Innovative Food Science & Emerging Technologies, 86:103360. https://doi.org/10.1016/j.ifset.2023.103360

68. Yang, T., Wang, Y., Yang, B., Zhang, Y., Wang, J., Qiang, S., Zhou, J., Li, S., & Chen, Y. (2023). Thin sheets of bean curd treated by cold plasma: Changes in surface structure and physicochemical properties. Innovative Food Science & Emerging Technologies, 84:103288. https://doi.org/10.1016/j.ifset.2023.103288

69. Zahoranová, A., Henselová, M., Hudecová, D., Kaliňáková, B., Kováčik, D., Medvecká, V., & Černák, M. (2016). Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chemistry and Plasma Processing, 36(2), 397–414. https://doi.org/10.1007/s11090-015-9684-z

70. Zhao, S.-Q., Chen, L., Yan, B., Wang, L.-H., Zeng, X.-A., & Aadil, R. M. (2023). Inactivation of Alicyclobacillus acidoterrestris vegetative cells and spores induced by atmospheric cold plasma. Innovative Food Science & Emerging Technologies, 89:103461. https://doi.org/10.1016/j.ifset.2023.103461

71. Zhao, Y., Shao, L., Jia, L., Zou, B., Dai, R., Li, X., & Jia, F. (2022). Inactivation effects, kinetics and mechanisms of air- and nitrogen-based cold atmospheric plasma on Pseudomonas aeruginosa. Innovative Food Science & Emerging Technologies, 79:103051. https://doi.org/10.1016/j.ifset.2022.103051

72. Zhi, A., Shi, S., Li, Q., Shen, F., He, X., Fang, Y., Hu, Q., & Jiang, X. (2023). Aflatoxins degradation and quality evaluation in naturally contaminated rice by dielectric barrier discharge cold plasma. Innovative Food Science & Emerging Technologies, 88:103426. https://doi.org/10.1016/j.ifset.2023.103426

73. Zhu, W., Tan, G., Han, M., Bu, Y., Li, X., & Li, J. (2023). Evaluating the effects of plasma-activated slightly acidic electrolyzed water on bacterial inactivation and quality attributes of Atlantic salmon fillets. Innovative Food Science & Emerging Technologies, 84:103286. https://doi.org/10.1016/j.ifset.2023.103286

74. Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M., Bourke, P. (2014). Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 42, 109–116. https://doi.org/10.1016/j.fm.2014.02.007


Review

For citations:


Karpenko D.V., Grishin A.G. Application of Low-Temperature Plasma Treatment in Food Production to Intensify Technological Processes and Improve Product Quality. Health, Food & Biotechnology. 2024;6(2). (In Russ.) https://doi.org/10.36107/hfb.2024.i2.s217

Views: 262


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)