Study of Physical and Chemical Properties of Grain Legume Raw Materials for Obtaining Dry Functional Mixtures
https://doi.org/10.36107/hfb.2024.i3.s233
Abstract
Introduction. The use of protein-rich legumes together with grain raw materials and spices with increased biological value allows enriching products with bioavailable phenolic antioxidants and balancing the amino acid composition. The resulting dry functional mixtures will affect the basic physiological processes of the body and strengthen the immune system.
Purpose. To identify the relationship between dry functional mixtures, their properties and the physical and chemical indicators of grain legumes; to analyze raw materials, dry functional mixtures, grinding batches, properties.
Materials and Methods. Physical properties: the linear dimensions of the grains were determined using a micrometer with an accuracy of 0.01 mm; the grain nature was determined according to GOST 10840-64; grain vitreousness according to GOST 10987-76; grain and processed product moisture content according to GOST 13586.5-93 and GOST 8.434-81.
Results. The functional and technological properties of dry functional mixtures (DFM) were determined: granulometric composition, degree of grinding; physicochemical indicators of grain legume raw materials: geometric parameters, grain shape, uniformity in size, saturation of the finished product with biologically active substances. Developed by SPS %: 3ВС-2 and 4ДС-3 (buckwheat - 37, peas - 15, millet - 24, pearl barley - 9, spelt - 5, rye - 9, allspice - 0.2). The degree of grinding of SFS is 132 μm. The yield of intermediate products of grinding of the presented two grinding batches of grain legume raw materials on five grain-forming torn and seven grinding systems is fractions of 157-250 μm.
Conclusions. The obtained results can be used in the production of flour culinary products in public catering establishments, as well as in mini-bakeries. The technological properties of grain legume raw materials are the criteria for choosing milling schemes and obtaining the optimal yield of powdered dry functional mixtures.
About the Authors
Anna T. VasyukovaRussian Federation
Irina U. Kusova
Aleksandr V. Moshkin
References
1. Алексеев, Г. В., Пальчиков, А. Н., Карпачев, В. Н., & Золотарева, А. А. (2017). Патент РФ на полезную модель № 170192. Струйный диспергатор пищевых добавок Университет ИТМО; № 2016144539.
2. Божко, С. Д., Ершова, Т. А., Чернышева, А. Н., & Черногор, А. М. (2020). Бобовые культуры - перспективное сырье для пищевой промышленности. Технологии пищевой и перерабатывающей промышленности АПК – продукты здорового питания, (2), 59-64. https://doi.org/10.24411/2311-6447-2020-10043
3. Васюкова, А. Т., Сусликов, А. В., & Филипенко, Т. А. (2001а). Исследование влияния качества измельчения зерна и выхода муки на свойства хлебобулочных изделий. В Сборнике трудов ДонГУЭТ (с. 103-107).
4. Васюкова, А. Т., Сусликов, А. В., Ярошева, А. И., & Макаренко, Л. И. (2001б). Исследование влияния качества измельчения зерна и выхода муки на свойства хлебобулочных изделий. В Сборнике трудов ПКИ (с. 68-71).
5. Васюкова, А. Т., Клюзов, Б. Н., Корнейко, А. А., Моргун, В. А., Сусликов, А. В., & Ярошева, А. И. (2002). Нетрадиционные технологии переработки и использования зерновых культур. Донбасс.
6. Глаголева, Л. Е., Зацепилина, Н. П., Ковалева, Е. Н., & Санберг, А. В. (2022). Рецептурно-технологические решения сухой смеси с заданными функциональными свойствами. Технологии пищевой и перерабатывающей промышленности АПК - продукты здорового питания, (2), 25-28. https://doi.org/10.24412/2311-6447-2022-2-25-31
7. Косован, А. П., Шлеленко, Л. А., Тюрина, О. Е., & Шарафетдинова, Х. Х. (2011). Патент РФ № 2434438C1 Смесь диабетическая для хлебобулочных изделий с использованием гречневой муки (варианты). ГНУ ГОСНИИХП Россельхозакадемии.
8. Курочкин, А. А., & Новикова, О. А. (2023). Поликомпонентная пищевая добавка на основе овощной фасоли. Инновационная техника и технология, 10(2), 19–24.
9. Муратбаев, А. М., Асенова, Б. К., Нурумхан, Г. Н., & Арпнова, Э. Ж. (2015а). Исследование композитной муки. Вестник ГУ имени Шакарима города Семей, 4(72), 42-46.
10. Муратбаев, А. М., Асенова, Б. К., Касымов, С. К., Нурымхан, Г. Н., & Нургазезова, А. Н. (2015б). Обогащение муки зерновыми культурами. В Пища и экология качество, 1, (с. 638-642).
11. Постникова, И. В., Блиничев, В. Н., & Кравчик, Я. (2015) Струйные мельницы. Современные наукоемкие технологии. Региональное приложение, (2(42)), 144- 146.
12. Романчиков, С. А., Алексеев Г. В., Леу А. Г., & Карпачев Д. В. (2017). Измельчение пищевого сырья нетрадиционными способами. Хранение и переработка сельхозсырья, (9), 24-29.
13. Санжаровская, Н. С., Сокол, Н. В., Храпко, О. П., Мамедов, К. С., & Романова, Н. Н. (2018). Хлебопекарные свойства композитных смесей муки из зерна пшеницы и полбы. Новые технологии / New technologies, (3), 60-65.
14. Текутьева, Л. А., Ершова, Т. А., Божко, С. Д., Сон, О. М., & Фищенко, Е. С. (2015). Патент РФ № 2562221C1. Состав каши быстрого приготовления. Дальневосточный Федеральный Университет (ДвФУ).
15. Типсина, H. H., & Селезнева, Г. К. (2015). Льняная мука как биологически активная пищевая добавка. Вестник КрасГАУ, (3), 57 – 58.
16. Чижикова, О. Г., Коршенко, Л. О., & Павлова, М. А. (2017). Разработка композитных мучных смесей с использованием измельченных семян чечевицы. Техника и технология пищевых производств, 46(3), 89- 94.
17. Boukid, F., Vittadini, E., Lusuardi, F., Ganino, T., Carini, E., Morreale, F., & Pellegrini, N. (2019). Does cell wall integrity in legume flour affect the physicochemical quality and in vitro starch hydrolysis of gluten-free bread? Journal of Functional Foods, 59, 110–118. https://doi.org/10.1016/j.jff.2019.05.034
18. Yu, D., Chen, Y. D., Ma, J., Sun, H., Yuan, Yu., Ju, Q., Teng, Yu., Yang, M., Li, W., Fujita, K., Tatsumi, E., & Luan, G. (2018). Effect of different milling methods on the physicochemical properties of common buckwheat flour. LWT, 92, 220–226. https://doi.org.10.1016/j.lwt.2018.02.033
19. Dhital, S, Bhattarai, R. R., Gorham, J., & Gidley, M. J. (2016). Intact cell wall structure controls in vitro starch digestion in legumes. Food & Function, 7, 1367–1379. https://doi.org.10.1039/C5FO01104C
20. Drakos, A., Kyriakakis, G., Evageliou, V., Protonotariou, S., Mandala, I., & Ritzoulis, C. (2017). Effect of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flour. Food Chemistry, 215, 326–332. https://doi.org.10.1016/j.foodchem.2016.07.169
21. He, S., Qin, Y., Walid, E., Li, L., Cui, J., & Ma, Y. (2014) The influence of ball milling on the physicochemical properties of corn starch. Biotechnology Reports, 3, 54–59. https://doi.org.10.1016/j.btre.2014.06.004
22. Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., Feng, N., & Shen, Q. (2019). Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients, 11(6), 1238. https://doi.org/10.3390/nu11061238
23. Jeong, D., Han, J. A., Liu, Q., & Chung, H. J. (2019) Effect of processing, storage and modification on in vitro starch digestion characteristics of legumes: a review. Food Hydrocolloids, 90, 367–376. https://doi.org/10.1016/j.foodhyd.2018.12.039
24. Jonnalagadda, S. S., Harnack, L, Hai Liu, R., McKeown, N., Seal, C., Liu, S., & Fahey, G. C. (2011). Putting the whole grain puzzle together: Health benefits associated with whole grains - Summary of the 2010 American Society of Nutrition Satellite Symposium. Journal of Nutrition, 141, 1011S–1022S. https://doi.org/10.3945/jn.110.132944
25. Kurnia, R., & Foster, T. J. (2018). Effect of ball milling on the structural, thermal and rheological properties of oat bran protein flour. Journal of Food Engineering, 229, 50–56. https://doi.org/ 10.1016/j.jfoodeng.2017.10.024
26. Lazaridou, A., Vouris, D. G., Zoumpoulakis, P., & Biliaderis, C. G. (2018). Physicochemical properties of flour and dough from jet flour from wheat. Food Hydrocolloids, 80, 111–121.https://doi.org/10.1016/j.foodhyd.2018.01.044
27. Lee, Y. T., Shim, M. J., Goh, H. K., Mok, C., & Puligundla, P. (2018). Effect of jet milling on the physicochemical properties, gelatinization properties and starch digestibility in vitro of germinated brown rice flour. Food Chemistry, 282, 164–168. https://doi.org/10.1016/j.foodchem.07.179
28. Liu, Yi., Xiu, M., Wu, H., Jing, L., Gong, B., Gou, M., Zhao, K., & Li., W. (2018). Compositional, physicochemical and functional properties of sprouted mung bean flour and its addition to the quality of wheat flour noodles. Journal of Food Science and Technology, 55, 5142–5152. https://doi.org/10.1007/s13197-018-3460-z
29. Mahasukhonthachat, K., Sopade, P. A., & Gidley, M. J. (2009). Particle size-dependent kinetics of starch digestion in sorghum. Journal of Food Engineering, 96, 18–28. https://doi.org/10.1016/j.jfoodeng.2009.06.051
30. Meng, Yi, Guan, H., Liu, H., & Zhang, H. (2019). Rheology and microstructure of composite wheat dough enriched with extruded mung bean flour. LWT, 109, 378–86. https://doi.org/10.1016/j.lwt.2019.03.095
31. Nair, R. M., Yang, R. Y., Easdown, W. J., Thavarajah, D., Thavarajah, P., Hughes, J. D. A. , & Keatinge, J. D. H. (2013). Biofortification of mung bean (Vigna radiata) as a whole food for improving human health. Journal of the Science of Food and Agriculture, 93, 1805–1813. https://doi.org/10.1002/jsfa.6110
32. Palavecino, P. M., Penci, M. K., & Ribotta, P. D. (2019). Effect of planetary ball milling on the physicochemical and morphological properties of sorghum flour. Journal of Food Engineering, 262, 22–28. https://doi.org/10.1016/j.jfoodeng.2019.05.007
33. Rao, B. D., Anis, M., Kalpana, K., Sunoj, K.V., Patil, J.V., & Ganesh, T. (2016). Effect of milling methods and particle size on hydration properties of sorghum flour and quality of sorghum biscuits. LWT - Food Science and Technology, 67, 8–13. https://doi.org/10.1016/j.lwt.2015.11.033
34. Raza, H., Ameer, K., Zaaboul, F., Sharif, H. R., Ali, B., Shoaib, M., Akhtar, W., & Zhang, L. (2019). Effect of ball milling on physicochemical, thermal and functional properties of extruded chickpea powder (Cicer arietinum L.). CyTA–Journal of Food, 17, 563–573. https://doi.org/10.1080/19476337.2019.1617352
35. Shi, Z., Yao, Y., Zhu, & Ren, G. (2016). Nutritional composition and antioxidant activity of twenty mung bean cultivars in China. Crop Journal, 4, 398–406. https://doi.org/10.1016/j.cj.2016.06.011
36. Taranathan, R. N., & Mahadevamma, S. (2003). Pulses - A boon to human nutrition. Trends in Food Science and Technology, 14, 507–518. https://doi.org/10.1016/j.tifs.2003.07.002
37. Thakur, S., Scanlon, M. G., Tyler, R. T., Milani, A., & Paliwal, J. (2019). Miller's characteristics of bean flour: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 18, 775–97. https://doi.org/10.1111/1541-4337.12413
38. Tsatsaragkou, K., Kara, T., Ritzoulis, C., Mandala, I., & Rosell, C.M. (2017). Improving the characteristics of carob flour for the production of gluten-free bread by particle size fractionation and jet milling. Food and Bioprocess Technology, 10, 831–841. https://doi.org/10.1007/s11947-017-1863-x
39. Zhang, K., Dai, Y., Hou, H., Li, H., Dong, H., Wang, W., & Zhand, H. (2019). Effect of milling on the structure and properties of mung bean starch and the quality of acetylated starch. Food Chemistry, 294, 285–292. https://doi.org/10.1016/j.foodchem.2019.05.055
Supplementary files
Review
For citations:
Vasyukova A.T., Kusova I.U., Moshkin A.V. Study of Physical and Chemical Properties of Grain Legume Raw Materials for Obtaining Dry Functional Mixtures. Health, Food & Biotechnology. 2024;6(3). (In Russ.) https://doi.org/10.36107/hfb.2024.i3.s233