Pectic Polysaccharides – Multifunctional Ingredients of Food and Biomedical Systems
https://doi.org/10.36107/hfb.2024.i4.s240
Abstract
Introduction. Pectin is a biocompatible polysaccharide with multifunctional technological and biological activity, depending on its source and extraction method. Extracting pectin from by-products of juice or sugar production represents an approach to utilizing agro-industrial waste by obtaining a commercial product with high added value. Recently, there has been a growing trend to use pectin for producing edible coatings to protect food products, antimicrobial films based on biocomposites and nanoparticles, and for synthesizing various medicinal preparations and dosage forms.
Purpose. The aim of this review is to analyze and summarize research findings regarding the relationship between the structural characteristics and functional properties of pectic polysaccharides.
Materials and Methods. The study is based on scientific publications, most of which were published between 2009 and 2024. The search and selection of articles were conducted using bibliographic databases such as eLIBRARY.RU, RSCI, Scopus, Web of Science, and PubMed. Data analysis involved systematization, summarization, intermediate conclusions, and a general conclusion utilizing elements of artificial intelligence.
Results. It has been concluded that due to the expanding applications of pectic polysaccharides and sources of pectin-containing raw materials, further research is necessary to investigate the relationship between the molecular-structural features of pectins, their functionality indicators, and their behavior in food and biomedical systems.
About the Authors
Vladimir N. GolubevSpain
Tatyana B. Tsyganova
Russian Federation
References
1. Kertes Z.I. The pectin substaces, N-Y, London, Acad. Press., 1951. -628 p.
2. Golubev V.N., Shelukhina N.P. Pectin: chemistry, technology, application, M., Publishing house of the ATN RF, 1985, -387 p., ISBN 5-8355-0027-95
3. Martau G.A.,Mihai M.,Vodhar D.C. The use of hchitosan, alginate and pectin in biomedical and food sector. Polymers, 2019, v.94, p.1-32.
4. Zhang V.,Xu P.,Zhang H. Pectin in cancer therapy : A review. Trends Food Scince Technology, 2015, v.44, p.258-271.
5. Wang W.,Chen W.,Zou M.,Lu R et al..Application of power ultrasound in oriented modification and degradation of pectin: A review. Jornal of Food Technology, 2018, v.234, p.98-107.
6. Nguemazong E.D.,Christiaes S., Shpigelman A., Van Loey A The emulsifying and emulsion-stabilizing properties of pectin: A review. Compromis Reviuew Food Sience and Food Safety, 2015, v.14, p.705-718.
7. Frietas C.M.,Sousa R.C.,Dias M.V.,Coimbra J.S. Extraction of pectin from passion fruit peel. Food Engineering. Review. 2020, v.12, p.460-472.
8. Ovodov Yu.S. Modern concepts of pectin substances. Bioorganic Chemistry, 2009, v.35, p. 293-310.
9. Rehall K.,Reiser S. Chemistry and Function of Pectins, Eds. Fishman M.L. Washington DS. American of Chemical Socaety, 1991, p.248-265.
10. Voragen A.G., Pilnic W., Thibault J.F. et al. Food Polysaccharides and their Application, Ed. Stephen A.M.,N-Y. Marcel Dekker, 1995, p.287-339.
11. Endress H.U. The Chemistry and Technology of Pectin, Ed. Walter B.H. San Diego: Acad.Press. 1991, p.251-268.
12. Munarin F.,Tanzu M.C.,Petrini P. Advances in biomedical application of pectin gels. Internation Journal of Biological Macromolleculs, 2012, v.51, p.681-689.
13. Lopez-Mata M.A.,Gastelum-Cabrera M.,Valbuera-Gregoria E at al. Physicochemical properties of novel pectin/Aloe gel membranes. Iranium Polymer Journal England, Ed.2018, v.27, p.545-553.
14. Ouyang J., Yang M.,Gong T.,Ou J. et al. Doxorubicin-loading core-shell pectin nanocell: A novel nanovehicle for anticancer agent delivery with multidrug resistance reversal. PLOS ONE, 2020, р.1-23.
15. Mohnen D. Pectin structure and biosynthesis. Current OpinonPlant of Biology, 2008, v.11, p.266-277.
16. Bichara L.C., Alvarez P.E.,Fiori Bimbi M.V., Vaca Y. Structural and spectroscopic study of a pectin isolated from citrus peel by using FTIR and FT-Raman spectra and DFT calculation. Physical of Technology, 2016, v.76, p.315-327.
17. Maxwell E.G.,Belshaw N.J.,Waldron K.W.,Morris V.J. Pectin an emerging new bioactive food polysaccharide. Trends of Food Scince Technology. 2012, v.24, p.64-73.
18. Rehall K.,Reiser S. Chemistry and Function of Pectins, Eds. Fishman M.L. Washington DS. American of Chemical Socaety, 1991, p.248-265.
19. Guillotin S.E. Stadies on intra- and intermolecular distributions in commercial pectins . Wageningen Univ., 2005, p.4-24.
20. Ciriminna R., Chavarria-Hernandez N., Hernandez A., Pagliaro M. Pectin: A new perspective from the biorefinery stаndpoint. Biofutls Bioproducts and Biorefining. 2015, v.11, p.266-277.
21. Ptichkin I.I., Ptichkina N.M. Food polysaccharides: Structural levels and functionality. Saratov, 2009, -152 p.
22. Linderstrom-Lange K., Schellman J.A. Protein structure and enzyme activity. Enzymes, N.-Y.; Acad. Press Inc., 1959, p.443-510.
23. Rees D.A., Welsh E.J. Secondary and tertiary structure in solution and gels. Angewante of Chemie International, Ed. Engl., 1977, v.16, p.214-224.
24. Chen J., Liu W., Liu C., Liang R.,Luo S. Pectin modifications : A review. Critical Review of Food Scince and Nutrition, 2015, v.55, p.684-698.
25. Freitas C.M., Costa A.R., Rodriges F.A., Dias M.M et al. Optimization of pectin extraction from passion fruit using the response surface method. Brazilion Journal of Development, 2020, v.6, p.560-565.
26. Goubet F., Strom A., Dupree P., Williams M., An investigation of pectin methylesterification patterns by two independent methods: Capillary electrophoresis and polysaccharide analysis using carbohydrate gel electrophoresis. Carbohydrates Review., 2005, v.340, p.193-199.
27. Round A.N., MacDougul A.J., Ring S.G., Morris V.J. Unexpecred branching in pectin observed by atomic force microscopy. Carbohydrates Research, 1997, v.303, p.251-255.
28. Ovodova R.G., Golovchenko V.V., Popov S.V., Ovodov Yu.S. The latest information on pectin polysaccharides. News of the scientific center of the Ural Branch of the Russian Academy of Sciences, 2010, v.3, p.37-45.
29. Munoz-Almagro N., Valadez-Carmona L., Mendiola J., Ibanez E. Structural characterisation of pectin obtained from cacao pod husk. Comparision of conventional and subcritical water extraction. Carbohydrates Polymer, 2019, v.217, p.69-78.
30. Birshtein T.M. Theory of macromolecular conformations. Synthesis, structure and properties of polymers., L., Nauka, 1989, p.146-156.
31. Rees D.A. Structure, conformation and mechanism in the formation of polysaccharide gel and networks. Advances of Carbohydrates Chemistry and Biochemistry, 1968, v.24, p.267-232.
32. Grant G.T.,Morris E.R.,Rees D.A.,Smith P.J.,Biological interaction between polysaccharides and divalent cations:The egg-box model. FEBS Letters, 1973, v.32, p.195-196.
33. Moe S.T., Draget K.I., Skjak-Braek G., Smidsrod O.Alginates, in A.M. Stephen (ed.) Food Polysaccharides and Their Application. N-Y.: Marsel Dekker, Inc., 1995, p.245-286.
34. Voragen A.G.J., Pilnik W., Thibault J.F., Axelos M.A., Renard C.M. Pectins, in A.M.Stephan (ed). Food Polysacchaarides and Their Application, N.-Y., Marcel Dekker Inc. , 1995. p.287-339.
35. Morris E.R.,Norton I.T. Polysaccharide aggregation in solution and gels., Amsterdam, Elsevier, 1983, p.549-593.
36. Donchenko L.V., Firsov G.G. Pectin: main properties, production and application. M., DeLi print, 2007, -276 p., ISBN 978-5-94343-126-5
37. Robinson G., Ross-Murphy S.B., Morris E.R. Viscosity-molecular weight relationships intrinsic chain flexibility and dynamic solution properties of guar galactomannan. Carbohydrates Research, 1982, v.107, p.17-32.
38. Brant D.A. Conformation and behavior of polysaccharides in solution, in J.Press (ed.). The Biochemistry of Plants. Academic Press, New York, 1980, v.3, p.425-472.
39. Ma X., Chen W., Yan T., Wang D et al. Comparison of citrus pectin and apple pectin in conjuration with soy protein isolate (SPI) under controlled dry-heating condition. Food Chemistry, 2020, v.309, p.125-501.
40. Rojas R., Alvarez-Perez O.B., Contreras-Esquivel J.C. et al. Valorisation of mango peles: Extraction of pectin and antioxidant and antifungal polyphenols. Waste Biomass Valorization, 2018, v.11. p.89-98.
41. Petkowicz C.L., Vriesmann L.C., Williams P.A. Pectin from food waste: Extraction, characterization and properties of watermelon rind pectin. Food Hydrocoll., 2017, v.98. p.709-716.
42. Dzhonmurodov A.S., Teshaev H.I., Kholov Sh.E., Usmanova Z.K. Physicochemical properties of sunflower pectin polysaccharides. Report of the Academy of Sciences of the Republic of Tatarstan, 2015, v.58, p.241-247.
43. Moorthy I.G., Maran J.P., Suria S.M., Naganyashree S., Shivamathi C.S. Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel. International Journal of Biology Macromolecules, 2015, v.72, p.323-328.
44. Anna A.Torkova, Ksenia V. Lisitskaya, Ivan S. Filimonov, Galina S.Kachlova, Vladimir N. Golubev, Tatyana V. Fedorova Physicochemical and functional properties of Cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PLOS ONE, 2018, September 20, p.1-24, https://doi.org/10.1371/jornal pone.0204261
45. Lalnunthari C., Devi L.M.,Badwaic L.S. Extraction of protein and pectin from pumpkin industry by-products and their utilization for developing edible film. Jornal of Food Science and Technology, 2020, v.57, p.807-816.
46. Rakhmanov O., Nuriev K.K., Yusupov A.M. Waste-free technology for processing cotton residues. Bulletin of the Altai Agrarian University, 2013, v. 6, p. 103-110.
47. Semenova E.V., Bilimonova A.S., Chebotnyuk V.V. Use of seaweed products in medicine and pharmacy. Modern problems of science and education. 2019, v.5, p.105-111, doi: 10.34215/1609-1175-2019-4-68-72
48. Farzaliev E.B., Golubev V.N., Tsyganova T.B. Study and identification of pectin substances of wild fruits of sea buckthorn Hippophae rhamnoides L. Storage and processing of agricultural raw materials, 2021, v.3, p.115-125., https//doi.org/10.36107/sptp.2021.213
49. Yang J.S., Mu T.H., Ma M.M., Extraction, structure and emulsifying properties of pectin from potato pulp, Food Chemistry, 2018, v.244, p.197-205.
50. Badaro A.T., Garcia-Martin J.F., Lopez-Barrera M. et al. Determination of pectin content in orange peels by near infrared hyperspectral imaging. Food Chemistry, 2020, v.323, p.126-861 .
51. Wicker L., Kim Y.,Kim M.J.,Thirield B., Lin Z. Pectin as a bioactive polysaccharide extracting tailored function from less. Food Hydrocollodes, 2014, v.42, p.251-259.
52. Sun D., Chen X., Zhu C. Physicochemical properties and antioxidant activity of pectin from hawthorn wine pomace: A comparison of different extraction methods. International Journal of Biological Macromollecules, 2020, v.158, p.239-247.
53. Alexos M.A.V.,Thibault J.M.,Influence of substituents of the carboxil groups and of the rhamnose content on the solution properties of pectin. Interrnational Journal of Biological Macromollecules, 1991, v.13, p.77-82.
54. Xu S.Y., Lui J.P., Huang X., Du L.P., Shi F.L. et al. Ultrasonic-microwave assisted extraction , characterization and biological actiyity of pectin from jackfruit peel. LWT of Food Science and Technology, 2018, v.90, p.577-582.
55. Lefsih K., Giacomaazza D., Dahmoune F., Mangione M. et al. Pectin from Opuntia ficus indica :Optimization of microwave- assisted extraction and preminary characterization. Food Chemistry. 2017, v.221, p.91-99.
56. Arrutia F., Adam M., Calvo-Carrascal M., Mao Y., Binner E. Development of a continuous-flow system for microwave- assisted extraction of pectin-derived oligosaccharides from food waste. Chemical Engineering. 2020, v.395, p.250-256.
57. Souza C.C., Roidriges T.H., Silva L.M., Ribeiro P.R.,Brito E.S. Sequential extraction of flavonoids and pectin from yellow passion fruit ring using pressurized solvent or ultrasound. Journal of Science of Food and Agricalches, 2018, v.89, p.362-368.
58. Jafaradeh-Moghaddam M., Shadel R., Peighambaroust S. Sugar beet pectin extracted by ultrasound or conventional heating: A comparison. Journal of Food Science and Technology, 2020, v.58, p.567-578.
59. Wafaa S., Abou-Elseoud A., Hassan M. Extraction of pectin from sugar beet pulp by enzymatic and ultrasound-assisted treatments. Carbohedrates Polemers Technologe and Application, 2021, v.2, p.101-110.
60. Liew S.Q., Teoh W.H.,Tan C.K., Yusoff R. Subcritical water extraction of low methoxyl pectin from pomelo (Citrus grandis L.) peels. International Journal of Biological Macromollecules. 2018, v.116, p.128-135.
61. Li W.J.,Fan Z.G., Wu Y.Y., Shi R.C. Eco-friedly extraction and physicochemical properties of pectin from jackfruit peel waste with subcritical water. Journal of Science of Food and Agriculche. 2019, v.99, p.283-292.
62. Bogus A.M., Shazzo Z.I. Physical methods of obtaining pectin, Krasnodar, Ekoinvest Publishing House, 2003, -127 p., ISBN 5-94215-030-3
63. Fishman M.L., Chau P., Hoagland K., Charactezization of pectin, flash-extraction from orange albedo by microwave heating under pressure. Carbohydrates Research, 2000, v. 323, p.126-138.
64. Muchdinov Z.K., Teshaev K.I., Dzhonmurodov A.S. et al. POhysico-chemical characterization of pectin polysaccharides from varios sources obtained be steam assisted flash extraction (SAFE). Macromollecules Symposium., 2012, v.317, p.142-148.
65. Golubev V.N., Gubanov S.N., Mikeladze O.G. Rotary cavitation device for processing pectin-containing raw materials. Food industry., 1990, v.9, p. 30-33.
66. Golubev V.N. Acoustic cavitation in food engineering. Proceding . 7th International Conference on Ultrasound, Amsterdam, 1996, p.174-175.
67. Sosnina N.A., Mironov V.F., Konovalov A.I. et al. Extraction of pectin substances of amaranth in a supercavitating device of the rotary-pulsation type. Storage and processing of agricultural raw materials, 1999, v.6, p. 32-35.
68. Zhang L., Liu D., Zhang Y., Zhang X. Ultrasound effect on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonic Sonochemistry, 2013, v.20, p.222-232.
69. Khalikov D.Kh., Mukhitdinov Z.K. Physicochemical bases of decomposition of protopectin of plant cells under the action of acid catalysts. Chemistry of natural compounds, 2004, v.2, p.89-100.
70. Liu D.,Priya B., Al-Dhabi N., Ponmurugan K. et al. The influence of ultrasound on thectructure, rheological properties and degradation path of citrus pectin. Proceding of Meeting of Sonochemistry, 2013, v.20, p.234-242.
71. Shelukhina N.P. Scientific foundations of pectin technology, Frunze, Ilim, 1988. -168 p., ISBN 5-8355-0027-0
72. Adetunji L.R., Adecunle A., Orsat V., Raghavan V. Advances in pectin production process in the nutraceutical and functional properties of pectin: A Review. Food Hydrocollodes., 2017, v.62. p.239-250.
73. Nagash F., Masoodi F., Rather S., Wani A. Emerging concepts in the nutraceutical and functional properties of pectin. Carbohydrates Polymer., 2017, v.1, p.227-239
74. Mikshina P.V., Makshakova O.N.,Petrova A.A. et al. Gelation of rhamnogalacturanan I is based on galactan side chain interaction and does not involve chemical modification. Carbohydrates Polymer, 2017, v.171, p.143-151.
75. Mikshina P.V. Classic and new types of pectin gels for food biotechnology and medicine. 2019, KNIITU Publishing House, Kazan, p.313-338.
76. Melnikova G.G., Kuznetsova G.B., Kallistov O.V., Sidorovich A.V. Elastic scattering of polarized light and supramolecular structure of water-salt solutions of apple pectin. High-molecular compounds, Series B, 1995, v.37, p.1106-1108.
77. Mazur L.M., Popova I.V., Simurova N.V., Sliva Yu.V. Physicochemical processes of pectin gelation in food technologies. Sakhar, 2014, v.1, p.2-5.
78. Forsberg L.S., Dell A., Walton D.J., Ballon C.E. Revised structure for the 6-O-methylglucose polysaccharide of mycobacterium smegmatics. Journal of Biological Chemistry, 1988, v.257, p.555-565.
79. Sviridov A.F., Chizhov O.S. Chemical methods of partial cleavage of polysaccharides. Progress in carbohydrate chemistry, Moscow, Nauka, 1985, p.21-54.
80. Chizhov O.S., Shashkov A.S. Mass spectroscopy and NMR spectroscopy in establishing the structure of polysaccharides. Bioorganic chemistry, 1976, v.2, p.315-350.
81. Marshall L., Fishman R., Peter H. The structure of high-methoxyl sugar acid gels of citrus pectin as determined be AFM. Carbohydrates Research, 2009, v.344, p.792-797.
82. Marshall L., Fishman R., Coffin D. Nanosrructure of native pectin sugar acid gels visualized by atomic force microscopy. Biomacromolecules, 2004, v.5, p.334-341, https://doi..org/10.1016/j.carres.2009.09.031
83. Celus M., Salvia-Trijillo L., Kyomigasho C., Maes I., et al. Srtucturally modified pectin for targeted lipid antioxidant capacity in linseed /sunflower oil-in-water emulsions. Food Chemistry, 2018, v.241, p.86-96.
84. Espina P.J.P., Du W.X., Avena-Bustillos R.D.J., Soares N.F.F. et al.Edible films from pectin: Physical-chemical and antimicrobial properties: A review. Food Hydrocolloides, 2014, v.35, p.287-296.
85. Douglas T.E.F., Hempel U., Zydek J., Pietryga K. et al., Pectin coating on titanium alloy scaffolds produced by additive manufacturing: Promotion of human bone marrow stromal cell proliferation. Material of Letters.,2018, v.227, p.225-228.
86. Chen H., Qui S., Gan J., Liu Y., Zhu Q., Yin L. New insights into the functionality of protein to the emulsifying properties of sugar beet pectin. Food Hydrocolloides, 2016, v.57, p.1-9.
87. Silko S.N., Sokol N.V., Donchenko L.V. Using pectin to improve bread quality. Advances in modern natural science, 2005, v.5, p. 50-55.
88. Drevin V.E., Kryuchkov E.I., Kryuchkova T.E. Biological aspects of pectin use in bread production. Biological aspects of agricultural production 2016, v 34, p. 37-42.
89. Sacoei-Vayghan R., Peighambardoust S., Herasi J., Peressini D. Effects of osmotic dehydratation ( with and without sonication) and pectin-based coating pretreatments on functional properties and color of hot-air dried apricot cubes. Food Chemistry. 2020, v.311, p. 125-138.
90. Anastas P., Eghbali N. Green chemisrty: Principles and practice. Chemical of Socaety Review, 2010, v.39, p.301-312.
91. Sousa V.G.I., Pires J.R.A., Rodriges C., Coehoso I.M., Fernando A.L. Chitosan composites in packaging industry-carrent trends and future challenges. Polymers, 2020, v.12, 417 p.
92. Eca K.S., Machado M.T.. Hubinger M.D., Menegalli F.C. Development of active films from pectin and fruit extracts: Light protection , antioxidant capacity and compounds stability. Journal of Food Science, 2015, v.80, p.389-396.
93. Gaona-Sanchez V.A., Calderon-Domingues G., Morales-Sanchez E. et al. Physicochemical and superficial characterization of a bilayer film of zein and pectin obtained by electrospraying. Journal of Applied Polymer Science, 2021, v.138, p.1-15.
94. Li D.,Li J.,Dong H., Zhang J., Xu F. Pectin in biomedical and drag delivery application : A review. Internatinal Journal of Biological Macromollecules, 2021, v.185, p.49-65.
95. Ullah K., Sohail M., Buabeid M., Murtaza G. et al., Pectin-based (LA-ci-MAA) semi-IPNS as potential biomaterial for colonic delivery of oxaliplatin. Internatinal Journal of Pharmacology, 2019, v.569, p.210-219.
96. Sriamornsac P., Wattanakorn N., Takeuchi H. Study on the mucoadhesion mechanism of pectin by atomic force microscopy and mucin-particle method. Carbohydrates Polymers, 2010, v.79, p.54-59.
97. Tian L., Singh A., Singh A.V., Synthesis and characterization of pectin-chitosan conjugate for biomedical application. International Journal of Biological Macromollecules, 2020, v.153, p.533-538.
98. Hwang S.W., Shin J.S. Pectin-coated curcumin-chitosan microparticles crosslinked with Mg2 + for delayed drug release in the digestive system. International Journal of Polymer Science, 2018, v.218, p.207-221.
99. Bai F., Diao J., Wang Y., Sun S., Zhang H et al. A new water-soluble nanomicrocelle formed through self-assembly of pectin-curcumin conjugates : Preparation, characterization and anticancer activity evalution. Journal of Agriculture and Food Chemistry, 2017, v.65, p.840-847.
100. Majzoob S., Atyabi F., Dorkoosh F., Kafegjiiski K. et al., Pectin-cysteine conjugate : Synthesis and in-vitro evaluation of its potential for drug delivery. Journal of Pharmation and Pharmacology, 2006, v.58, p.601-610.
101. Cheewatnakkornkool K., Niratisai S., Manchun S., Dass C. et al. Characterization and in vitro release studies of oral microbeads containing thiolated pectin-doxorubicin conjugates for colorectal cancer treatment. Asian Journal of Pharnacologe Science, 2017, v.12, p.509-520.
102. Ye P.J., Huang C., Yang S., Li Z., Tang S. et al., Facile fabricatin of a novel hidrid nanoparticles by self-doxorubicin conjugates for hepatocellular carcinoma therapy. Artificial Cells and Nanomedical Biotechnology, 2018, v.46, p.661-670.
103. Li Z., Jiang M., Chen B., Gao P. et al. Fabrication and characterization of a novel self-assembling micelle based on chitosan cross-linked pectin-doxorubicin conjugares macromolecular pro-drug for targeted cancer therapy. RSC Advanches, 2018, v.8, p.204-216.
104. Sarioglu E., Arabacioglu K.,Turan D., Baturel S.,Guner F. Theophlylline-loaded pectin-based hydrogels. II. Effect of concentration of initial pectin solution on drug release profile. Journal of Applied Polymers Science., 2019, v.136, p.1-15.
105. Rainsford K.D. Ibuproifen: pharmacololy, therapeutics and side effects. Springer Heidelberg, New York. 2012. -259 p., ISBN 978-5-8114-2716-1
106. Minzanova S.T., Chekunkov E.V., Milyukov V.A., Mironova A.V. et al. Preparation, composition and physicochemical properties of pectin complexes with ibuprofen. Reports of the Russian Academy of Sciences, Chemistry, Materials Sciences, 2020, v.491, p.49-54, DOI:10.31857/S26869535220065
107. Freitas C.M.P., Coimbra J.S.R., Souza V.G.L.,Souza R.C.S. Srtucture and applications of pectin food, biomedical and pharmaceutical inrusrty: A review. Coating, 2021, v.11, p.922-942, https://doi.org/10.3390/coatings 11080922
108. Marenda F.R.B., Mattioda F., Demiate L.M., Francisco A. et al.,Advances in studies using vegetable wastes to obtain pectic substances: A reiew. Journal of Polymers and the Environment, 2019, v.27, p.549-460.
109. Pletnev I.V., Smirnova S.V., Khachatryan K.S., Zernov V.V. Application of ionic liquids in extraction. Russian Chemical Journal, 2004, v.6, p.51-55. https://doi.org/10.33380/2305-2066-11-3-75-83
110. Andrew C., Etim E., Ushie O.,Job J. Deep eutectic solvents: an overview of its application as a “green” extractant. International Journal of Asian Pacific Community Service, 2017, v.4(6), p.23-30.
Supplementary files
Review
For citations:
Golubev V.N., Tsyganova T.B. Pectic Polysaccharides – Multifunctional Ingredients of Food and Biomedical Systems. Health, Food & Biotechnology. 2024;6(4). (In Russ.) https://doi.org/10.36107/hfb.2024.i4.s240