Preview

Health, Food & Biotechnology

Advanced search

Effect of Chalcone Derivative on Changes in Nox4-Dependent Mitochondrial Biogenesis of Brain Tissue in Rats with Focal Cerebral Ischemia

https://doi.org/10.36107/hfb.2024.i4.s241

Abstract

Introduction. NADP-oxidase 4 or NOX4 is an enzyme of the oxidase group that plays a significant role in the pathogenesis of ischemic stroke. First of all, NOX4 mediates the activation of oxidative stress and mitochondrial dysfunction, which makes it a promising pharmacotherapeutic target.

Purpose. To evaluate the effect of the administration of 3-[(1E)-3-(3,4-dimethylphenyl)-3-oxoprope-1-en-1-yl]-4H-1-benzopyran-4-one on the change in NOX4-dependent mitochondrial biogenesis in rats with focal ischemia.

Materials and Methods. Focal cerebral ischemia was modeled by irreversible right-sided occlusion of the middle cerebral artery in male Wistar rats. The analyzed compound - 3-[(1E)-3-(3,4-dimethylphenyl)-3-oxoprope-1-en-1-yl]-4H-1-benzopyran-4-one and the reference – ethylmethylhydroxypyridine succinate were administered orally at doses of 50 mg/kg and 100 mg/kg, respectively, on for 3 days from the moment of ischemia modeling. After the specified time, a change in the size of the necrosis zone was assessed in rats, a change in the activity of enzymes- biomarkers of mitochondrial biogenesis – succinate dehydrogenase and cytochrome-c-oxidase, as well as the NOX4 content were determined in the mitochondrial fraction.

Results. The study showed that against the background of administration of ethylmethylhydroxypyridine succinate and 3-[(1E)-3-(3,4-dimethylphenyl)-3-oxoprope-1-en-1-yl]-4H-1-benzopyran-4-one to animals, a decrease in NOX4 content by 41.9% (p<0.05) and 42.8% (p<0.05) respectively was observed, which was accompanied by an increase in the activity of succinate dehydrogenase by 131.8% (p<0.05) and 137.5% (p<0.05), respectively, as well as cytochrome-c-oxidase by 83.1% (p<0.05) and 79.0% (p<0.05), respectively. It is worth noting that when using ethylmethylhydroxypyridine succinate and 3-[(1E)-3-(3,4-dimethylphenyl)-3-oxoprope-1-en-1-yl]-4H-1-benzopyran-4-oh, the brain necrosis zone in rats decreased by 17.6% (p<0.05) and 15.2% (p<0.05), respectively.

Conclusion. It has been shown that oral administration of 3-[(1E)-3-(3,4-dimethylphenyl)-3-oxoprope-1-en-1-yl]-4H-1-benzopyran-4-one to animals with focal ischemia leads to a decrease in the area of brain necrosis, which may be based on suppression NOX4 and, accordingly, improved mitochondrial function.

About the Author

Dmitry I. Pozdnyakov
Pyatigorsk Medical and Pharmaceutical Institute - branch of the Volgograd State Medical University; Pyatigorsk SRIB FSCC MRB FMBA of Russia.
Russian Federation


References

1. Поздняков Д. И. (2023). VDAC1-зависимые митохондриальные эффекты соединений, содержащих 4-гидрокси-3,5-ди-трет-бутилфенильный заместитель, при экспериментальной очаговой ишемии головного мозга. Молекулярная медицина, 21 (1), 58-64. https://doi.org/10.29296/24999490-2023-03-08

2. Воронков, А. В., Поздняков, Д. И., Руковицина, В. М., Веселова, О. Ф., Олохова, Е. А., & Оганесян, Э. Т. (2019). Антирадикальные и хелатирующие свойства производных хромон-3-альдегида. Экспериментальная и клиническая фармакология, 82(12), 32–35. https://doi.org/10.30906/0869-2092-2019-82-12-32-35

3. Поздняков, Д. И. (2022). Молекулярные механизмы нейропротекции 3-[(Е)-3-(3,5-дит-бутил-4-гидроксифенил)-3-оксопроп-1-енил]-6-метокси-хромен-4-она при экспериментальной черепно-мозговой травме. Молекулярная медицина, 20(3), 54-59. https://doi.org/10.29296/24999490-2022-03-08

4. Bernard, K., Logsdon, N. J., Miguel, V., Benavides, G. A., Zhang, J., Carter, A. B., Darley-Usmar, V. M., & Thannickal, V. J. (2017). NADPH Oxidase 4 (Nox4) Suppresses Mitochondrial Biogenesis and Bioenergetics in Lung Fibroblasts via a Nuclear Factor Erythroid-derived 2-like 2 (Nrf2)-dependent Pathway. Journal of Biological Chemistry, 292(7), 3029–3038. https://doi.org/10.1074/jbc.M116.752261

5. Chen, W., Guo, Y., Yang, W., Zheng, P., Zeng, J., & Tong, W. (2015). Protective effect of ginsenoside Rb1 on integrity of blood–brain barrier following cerebral ischemia. Experimental Brain Research, 233(10), 2823–2831. https://doi.org/10.1007/s00221-015-4352-3

6. Dai, Y., Zhang, H., Zhang, J., & Yan, M. (2018). Isoquercetin attenuates oxidative stress and neuronal apoptosis after ischemia/reperfusion injury via Nrf2-mediated inhibition of the NOX4/ROS/NF-κB pathway. Chemico-Biological Interactions, 284, 32–40. https://doi.org/10.1016/j.cbi.2018.02.017

7. Feske, S. K. (2021). Ischemic Stroke. The American Journal of Medicine, 134(12), 1457–1464. https://doi.org/10.1016/j.amjmed.2021.07.027

8. Haupt, M., Gerner, S. T., Bähr, M., & Doeppner, T. R. (2023). Neuroprotective Strategies for Ischemic Stroke—Future Perspectives. International Journal of Molecular Sciences, 24(5), 4334. https://doi.org/10.3390/ijms24054334

9. Li, Y., D’Aurelio, M., Deng, J.-H., Park, J.-S., Manfredi, G., Hu, P., Lu, J., & Bai, Y. (2007). An Assembled Complex IV Maintains the Stability and Activity of Complex I in Mammalian Mitochondria. Journal of Biological Chemistry, 282(24), 17557–17562. https://doi.org/10.1074/jbc.M701056200

10. Lu, P., Zhang, C., Zhang, X., Li, H., Luo, A., Tian, Y., & Xu, H. (2017). Down-regulation of NOX4 by betulinic acid protects against cerebral ischemia-reperfusion in mice. Current Medical Science, 37(5), 744–749. https://doi.org/10.1007/s11596-017-1798-5

11. Palomino-Antolín, A., Decouty-Pérez, C., Farré-Alins, V., Narros-Fernández, P., Lopez-Rodriguez, A. B., Álvarez-Rubal, M., Valencia, I., López-Muñoz, F., Ramos, E., Cuadrado, A., Casas, A. I., Romero, A., & Egea, J. (2023). Redox Regulation of Microglial Inflammatory Response: Fine Control of NLRP3 Inflammasome through Nrf2 and NOX4. Antioxidants, 12(9), 1729. https://doi.org/10.3390/antiox12091729

12. Park, M. W., Cha, H. W., Kim, J., Kim, J. H., Yang, H., Yoon, S., Boonpraman, N., Yi, S. S., Yoo, I. D., & Moon, J.-S. (2021). NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biology, 41, 101947. https://doi.org/10.1016/j.redox.2021.101947

13. Paul, S., & Candelario-Jalil, E. (2021). Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Experimental Neurology, 335, 113518. https://doi.org/10.1016/j.expneurol.2020.113518

14. Pozdnyakov, D. I., Zolotych, D. S., Rukovitcina, V. M., & Oganesyan, E. T. (2022). Chromone derivatives suppress neuroinflammation and improve mitochondrial function in the sporadic form of Alzheimer’s disease under experimental conditions. Iranian Journal of Basic Medical Sciences, 25(7). https://doi.org/10.22038/ijbms.2022.65377.14387

15. Pozdnyakov, D. I., Zolotykh, D. S., & Vihor, A. A. (2023). An effect of ethylmethylhydroxypyridine succinate and ethylmethylhydroxypyridine malate on changes in mitochondrial function under conditions of focal cerebral ischemia. Zhurnal Nevrologii i Psikhiatrii Im. S.S. Korsakova [S.S. Korsakov Journal of Neurology and Psychiatry], 123(11), 111. https://doi.org/10.17116/jnevro2023123111111 (In Russ.)

16. Pozdnyakov, D., Voronkov, A., & Rukovitsyna, V. (2020). Chromon-3-aldehyde derivatives restore mitochondrial function in rat cerebral ischemia. Iranian Journal of Basic Medical Sciences, 23(9). https://doi.org/10.22038/ijbms.2020.46369.10710

17. Shademan, B., Avci, C. B., Karamad, V., Soureh, G. J., Olia, J. B. H., Esmaily, F., Nourazarian, A., & Nikanfar, M. (2023). The Role of Mitochondrial Biogenesis in Ischemic Stroke. Journal of Integrative Neuroscience, 22(4), 88. https://doi.org/10.31083/j.jin2204088

18. Shen, J., Li, G., Zhu, Y., Xu, Q., Zhou, H., Xu, K., Huang, K., Zhan, R., & Pan, J. (2021). Foxo1‐induced miR‐92b down‐regulation promotes blood‐brain barrier damage after ischaemic stroke by targeting NOX4. Journal of Cellular and Molecular Medicine, 25(11), 5269–5282. https://doi.org/10.1111/jcmm.16537

19. Syed, A. A., Reza, M. I., Yadav, H., & Gayen, J. R. (2023). Hesperidin inhibits NOX4 mediated oxidative stress and inflammation by upregulating SIRT1 in experimental diabetic neuropathy. Experimental Gerontology, 172, 112064. https://doi.org/10.1016/j.exger.2022.112064

20. Tamura, A., Graham, D. I., McCulloch, J., & Teasdale, G. M. (1981). Focal Cerebral Ischaemia in the Rat: 1. Description of Technique and Early Neuropathological Consequences following Middle Cerebral Artery Occlusion. Journal of Cerebral Blood Flow & Metabolism, 1(1), 53–60. https://doi.org/10.1038/jcbfm.1981.6

21. Wang, H., Huwaimel, B., Verma, K., Miller, J., Germain, T. M., Kinarivala, N., Pappas, D., Brookes, P. S., & Trippier, P. C. (2017). Synthesis and Antineoplastic Evaluation of Mitochondrial Complex II (Succinate Dehydrogenase) Inhibitors Derived from Atpenin A5. ChemMedChem, 12(13), 1033–1044. https://doi.org/10.1002/cmdc.201700196

22. Wang, Y., Zhong, L., Liu, X., & Zhu, Y. (2017). ZYZ-772 Prevents Cardiomyocyte Injury by Suppressing Nox4-Derived ROS Production and Apoptosis. Molecules, 22(2), 331. https://doi.org/10.3390/molecules22020331

23. Xu, W., Li, T., Gao, L., Zheng, J., Yan, J., Zhang, J., & Shao, A. (2019). Apelin-13/APJ system attenuates early brain injury via suppression of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation and oxidative stress in a AMPK-dependent manner after subarachnoid hemorrhage in rats. Journal of Neuroinflammation, 16(1), 247. https://doi.org/10.1186/s12974-019-1620-3

24. Zeng, C., Wu, Q., Wang, J., Yao, B., Ma, L., Yang, Z., Li, J., & Liu, B. (2016). NOX4 supports glycolysis and promotes glutamine metabolism in non-small cell lung cancer cells. Free Radical Biology and Medicine, 101, 236–248. https://doi.org/10.1016/j.freeradbiomed.2016.10.500

25. Zhao, Y., Zhang, X., Chen, X., & Wei, Y. (2021). Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). International Journal of Molecular Medicine, 49(2), 15. https://doi.org/10.3892/ijmm.2021.5070


Supplementary files

Review

For citations:


Pozdnyakov D.I. Effect of Chalcone Derivative on Changes in Nox4-Dependent Mitochondrial Biogenesis of Brain Tissue in Rats with Focal Cerebral Ischemia. Health, Food & Biotechnology. 2024;6(4). (In Russ.) https://doi.org/10.36107/hfb.2024.i4.s241

Views: 137


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)