Preview

Health, Food & Biotechnology

Advanced search

Effect of Berry Compositions on Antioxidant Properties during the Production and Storage of Multicomponent Crushed Berries without Sugar

https://doi.org/10.36107/hfb.2025.i1.s248

Abstract

Introduction. Among canned fruits, only crushed fruits may not be boiled, minimizing heat treatment, which helps to preserve their antioxidant properties. In the processing of crushed berries without sugar, cranberries can be used in combination with berries with a higher sugar content.

The purpose of the work is to study the possibility of using cranberries in berry compositions with bilberries or blueberries to produce multi-component crushed berries without sugar and their effect on antioxidant properties during production and storage.

Materials and Methods. Multicomponent crushed berries were made from wild cranberries, bilberries and blueberries, which were heat-treated for 5 minutes, poured into sterile jars and stored for a year in refrigeration conditions. Crushed cranberries without sugar served as a control. The sugar content and titratable acidity were determined in the berries, before and after the production of crushed berries and during storage every 3 months – the content of flavonoids, anthocyanins, hydroxycinnamic acids, vitamin C and antioxidant activity by the FRAP method.

Results. For the production of multi-component crushed berries without sugar, berry compositions of cranberry/bilberry (2:3) and cranberry/blueberry (1:1) were organoleptically selected based on the sugar-acid index of berries. After heat treatment, the antioxidants in the multi-component crushed berries decreased by 25.9–40.5%, with the greatest loss of anthocyanins and vitamin C. After production, the multi-component crushed berries cranberry/bilberry and cranberry/blueberry, compared to crushed cranberries, contained more flavonoids by 14.1 and 15.9%, anthocyanins by 37.9 and 30.1%, hydroxycinnamic acids by 10.4 and 12.7%, antioxidant activity by 10.4 and 6.2%, respectively. Refrigerated storage for a year resulted in further degradation of antioxidants, especially after 3 months for all bioactive compounds regardless of the type and ratio of crushed berries. At the end of storage, the antioxidant properties of multi-component crushed berries exceed the antioxidant properties of crushed cranberries.

Conclusions. Multi-component crushed berries without sugar can be produced from cranberries in combination with bilberries (2:3) or blueberries (1:1), which forms their sweet and sour taste and antioxidant properties

About the Author

Liudmila P. Nilova
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Candidate of Technical Sciences, Associate Professor

at the Higher School of Service and Trade 



References

1. Abramova, Ya. I., Kalinkina, G. I. & Chuchalin, V. S. (2011) Razrabotka metodiki kolichestvennogo opredeleniya fenol'nyh soedinenij v zhelchegonnom sbore 2 [Development of a method for the quantitative determination of phenolic compounds in a choleretic collection 2]. Himiya rastitel'nogo syr'ya [Chemistry of plant raw material], (4), 265–268. (In Russ.)

2. Alekseenko, E. V., Karimova, N. Yu. & Tsvetkova, A. A. (2023). Sovremennoe sostoyanie i perspektivy razvitiya sposobov pererabotki yagod cherniki: Obzor predmetnogo polya [The Current State and Prospects for the Development of Methods for Processing Bilberries: Scoping Review]. Hranenie I pererabotka sel’hozsyr’ya [Storage and Processing of Farm Products], (1), 22-44. (In Russ.) https://doi.org/10.36107/spfp.2023.353

3. Botirov, E.Kh. & Lyutikova, M.N. (2015). Himicheskij sostav i prakticheskoe primenenie yagod brusniki i klyukvy. [Chemical composition and practical application of lingonberries and cranberries]. Himiya rastitel'nogo syr'ya [Chemistry of plant raw material], (2), 5–27. (In Russ.) https://doi.org/10.14258/jcprm.201502429

4. Vasiyarov, G.G., Drob, A.A., Titova, E.V. & Staroverov, S.M. (2016) Klasternyj analiz antocianov cherniki metodom VEZHKH. [Cluster analysis of blueberry anthocyanins by HPLC]. Sorbcionnye i hromatograficheskie processy [Sorption and chromatographic processes], 16 (4), 488–495. (In Russ.)

5. Velichko, N.A. & Berikashvili, Z.R. (2016). Issledovanie himicheskogo sostava yagod golubiki obyknovennoj i razrabotka receptur napitkov na ee osnove. [Study of chemical composition of blueberries and development of beverage recipes based on them]. Vestnik KrasGAU [Bulletin of KrasGAU], 118 (7), 126–131. (In Russ.)

6. Kedrinskaya, L.I., Yashin, A.Ya. & Yashin, Ya.I. (2023) Profilaktika i lechenie serdechno-sosudistyh zabolevanij prirodnymi antioksidantami. [Prevention and treatment of cardiovascular diseases with natural antioxidants]. Analitika [Analytics], 13 (5), 338–345. (In Russ.) https://doi.org/10.22184/2227-572X.2023.13.5.338.344

7. Manev, Z. K., Ivanova, P. H. & Mikhova, T. M. (2019). Razrabotka dzhema iz oblepihi so srednim soderzhaniem sahara [Development of sea buckthorn jam with medium sugar content]. Zdorov'e cheloveka, teoriya i metodika fizicheskoj kul'tury i sporta [Human Health, Theory and Methodology of Physical Culture and Sports], 15 (4), 244–251. (In Russ.)

8. Nilova, L.P. (2014) Upravlenie assortimentom prodovol'stvennyh tovarov dlya likvidacii disbalansa struktury pitaniya naseleniya Rossii [Management of the range of food products to eliminate the imbalance in the nutritional structure of the population of Russia]. Problemy ekonomiki i upravleniya v torgovle i promyshlennosti [Problems of economics and management in trade and industry], 1 (5), 64–70. (In Russ.)

9. Polina, S. A. & Efremov A. A. (2014) Sostav antocianov plodov cherniki obyknovennoj, brusniki obyknovennoj i klyukvy obyknovennoj Krasnoyarskogo kraya po dannym VEZHKH] [Composition of anthocyanins in the fruits of blueberries, lingonberries and cranberries of the Krasnoyarsk Territory by HPLC]. Himiya rastitel'nogo syr'ya [Chemistry of plant raw material], (2), 103–110. (In Russ.) https://doi.org/10.14258/jcprm.1402103

10. Tutelyan, V.A., Nikityuk, D.B., Baturin, A.K., Vasiliev, A.V., Gapparov, M.M.G., Zhilinskaya, N.V. & Kodentsova, V.M. (2020). Nutriom kak napravlenie «glavnogo udara»: opredelenie fiziologicheskih potrebnostej v makro- i mikronutrientah, minornyh biologicheski aktivnyh veshchestvah pishchi [Nutriome as a direction of the "main strike": determination of physiological needs for macro- and micronutrients, minor biologically active substances of food]. Voprosy pitaniya [Problems of Nutrition], 89 (4), 24–34. (In Russ.) https://doi.org/10.24411/0042-8833-2020-10039

11. Tutelyan, V.A. (2021) Zdorovoe pitanie dlya obshchestvennogo zdorov'ya [Healthy Nutrition for Public Health]. Obshchestvennoe zdorov'e [Public Health], 1 (1), 56–64. (In Russ.) https://doi.org/10.21045/2782-1676-2021-1-1-56-64

12. Yashin, A.Ya., Vedenin, A.N., Yashin, Ya.I. & Nemzer, B.V. (2019). Yagody: himicheskij sostav, antioksidantnaya aktivnost', vliyanie potrebleniya na zdorov'e cheloveka [Berries: chemical composition, antioxidant activity, impact of consumption on human health]. Analitika [Analytics], 9 (3), 222–231. (In Russ.) https://doi.org/10.22184/2227-572X.2019.09.3.222.230

13. Amakura, Yo., Umino, Yu., Tsuji, S. & Tonogai, Ya. (2010). Influence of jam processing on the radical scavenging activity and fhenolic content in berries. J. Agric. Food Chem., (48), 6292-6297. https://doi.org/10.1021/jf000849z

14. Borges, G., Degeneve, A., Mullen, W. & Crozier, A. (2010). Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J. Agric. Food Chem., (58), 3901–3909. https://doi.org/10.1021/jf902263n

15. Chen, M., Wang, Z., Yu, Ji., Wang, Ju., Xu, H. & Yue, X. (2023). Effects of electron beam irradiation and ultrahigh-pressure treatments on the physicochemical properties, active components, and flavor volatiles of jujube jam. LWT - Food Science and Technology, (187), 115292. https://doi.org/10.1016/j.lwt.2023.115292

16. Chorfa, N., Savard S. & Belkacemi Kh. (2015) An efficient method for high-purity anthocyanin isomers isolation from wild blueberries and their radical scavenging activity. Food Chemistry, 197, 1226–1234. https://doi.org/10.1016/j.foodchem.2015.11.076

17. Cordeiro, T., Fernandes, I., Pinho, O., Calhau, C., Mateus, N. & Faria, A. (2021) Anthocyanin content in raspberry and elderberry: The impact of cooking and recipe composition. International Journal of Gastronomy and Food Science, (24), 100316. https://doi.org/10.1016/j.ijgfs.2021.100316

18. Diaconeasa, Z., Iuhas, C. I., Ayvaz, H., Rugina, D., Stanila, A., Dulf, F., Bunea, A., Socaci, S. A., Socaciu C. & Pintea, A. (2019). Phytochemical characterization of commercial processed blueberry, blackberry, blackcurrant, cranberry, and raspberry and their antioxidant activity. Antioxidants, (8), 540; https://doi.org/10.3390/antiox8110540

19. Ding, X., Zhang, Ya., Li, Ji. & Yan, Sh. (2024) Structure, spectral properties and antioxidant activity of melanoidins extracted from high temperature sterilized lotus rhizome juice. International Journal of Biological Macromolecules, (270), 132171. https://doi.org/10.1016/j.ijbiomac.2024.132171

20. Enaru, B., Dretcanu, G., Pop, T.D., Stănilă, A. & Diaconeasa, Z. (2021) Anthocyanins: factors affecting their stability and degradation. Antioxidants, 10, 1967. https://doi.org/10.3390/antiox10121967

21. Guo, L., Qiao, Ji., Mikhailovich, M. S., Wang, L., Chen, Yu., Ji, X., She, H., Zhang, L., Zhang, Ya. & Huo, Ju. (2024). Comprehensive structural analysis of anthocyanins in blue honeysuckle (Lonicera caerulea L.), bilberry (Vaccinium uliginosum L.), cranberry (Vaccinium macrocarpon Ait.), and antioxidant capacity comparison. Food Chemistry: X, (23), 101734. https://doi.org/10.1016/j.fochx.2024.101734

22. Howard, L. R., Castrodale, Ch., Brownmiller, C. & Mauromoustakos, A. (2010) Jam processing and storage effects on blueberry polyphenolics and antioxidant capacity. J. Agric. Food Chem., (58), 4022–4029. https://doi.org/10.1021/jf902850h

23. Howard, L., Brownmiller, C. & Garźon (2024) Monitoring effects on anthocyanins, non-anthocyanin phenolics and ORACFL values of Colombian bilberry (V. meridionale Swartz) during pulping and thermal operations. Heliyon, (10), e33504. https://doi.org/10.1016/j.heliyon.2024.e33504

24. Igual, M., García-Martínez, E., Camacho, M.M. & Martínez-Navarrete, N. (2013). Jam processing and storage effects on β-carotene and flavonoids content in grapefruit. Journal of functional foods, (5), 736 –744. http://doi.org/10.1016/j.jf f.2013.01.019

25. Jiménez, N., Bassama, Jo. & Bohuon, Ph. (2020). Estimation of the kinetic parameters of anthocyanins degradation at different water activities during treatments at high temperature (100–140 °C) using an unsteady-state 3D model. Journal of Food Engineering, (279), 109951. https://doi.org/10.1016/j.jfoodeng.2020.109951

26. Kalisz, S., Polak, N., Cacak-Pietrzak, G., Cendrowski, A. & Kruszewski, B. (2023) Impact of production methods and storage time on the bioactive compounds and antioxidant activity of confitures made from blue honeysuckle berry (Lonicera caerulea L.). Appl. Sci., (13), 12999. https://doi.org/10.3390/app132412999

27. Kamiloglu, S., Pasli, A. A., Ozcelik, B., Camp, Jo. V. & Capanoglu, E. (2015) Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chemistry, (186), 74–82. https://doi.org/10.1016/j.foodchem.2014.12.046

28. Kovačević, D. B., Putnik, P., Dragović-Uzelac, V., Vahčić, N., Babojelić, S. M. & Levaj, B. (2015). Influences of organically and conventionally grown strawberry cultivars on anthocyanins content and color in purees and low-sugar jams. Food Chemistry, (181), 94–100. https://doi.org/10.1016/j.foodchem.2015.02.063

29. Li, D., Li, D., Ma, Y., Sun, X., Lin, Y. & Meng X. (2017) Polyphenols, anthocyanins, and flavonoids contents and the antioxidant capacity of various cultivars of highbush and half-high blueberries. Journal of Food Composition and Analysis, (62), 84–93. http://dx.doi.org/10.1016/j.jfca.2017.03.006

30. Li, Yi., Xiao, S., Zhang, Q., Wang, N., Yang, Q. & Hao, Ji. (2024) Development and standardization of spectrophotometric assay for quantification of thermal hydrolysis-origin melanoidins and its implication in antioxidant activity evaluation. Journal of Hazardous Materials, (476), 135021. https://doi.org/10.1016/j.jhazmat.2024.135021

31. Martinsen, B. K, Aaby, K. & Skrede, G. (2020) Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chemistry, (316), 126297. https://doi.org/10.1016/j.foodchem.2020.126297

32. Mazur, S. P., Nes, A., Wold, A.-B., Remberg, S. F., Martinsen, B. & Aaby, K. (2014) Effects of ripeness and cultivar on chemical composition of strawberry (Fragaria х ananassa Duch.) fruits and their suitability for jam production as a stable product at different storage temperatures. Food Chemistry, (146), 412–422. http://dx.doi.org/10.1016/j.foodchem.2013.09.086

33. de Mello e Silva, G. N., Rodrigues, E. S. B., de Macêdo, I. Y. L., Gil, H. P. V., Campos, H. M., Ghedini, P. C., da Silva, L. C., Batista, E. A., de Araújo, G. L., Vaz, B. G., de Castro Ferreira, T. A. P., do Couto, R. O. & de Souza Gil, E. (2022). Blackberry jam fruit (Randia formosa (Jacq.) K. Schum): An Amazon superfruit with in vitro neuroprotective properties. Food Bioscience, (50), 102084. https://doi.org/10.1016/j.fbio.2022.102084

34. Mendelová, A., Mendel, Ľ., Fikselová, M. & Czako, P. (2013). Evaluation of anthocyanin changes in blueberries and in blueberry jam after processing and storage. Potravinarstvo, 7 (1), 130-135. https://doi.org/10.5219/293

35. de Morais, J. L., Bezerril, F. F., Viera, V. B., Dantas, C. E. A., de Figueirêdo, R. M. F., Moreira, I. dos S., dos Santos, K. M. O., do Egito A. S., Lima, M. dos S., Soares, Ju. K. B. & de Oliveira, M. E. G. (2024). Incorporation of mixed strawberry and acerola jam into greek-style goat yogurt with autochthonous adjunct culture of Limosilactobacillus mucosae CNPC007: Impact on technological, nutritional, bioactive, and microbiological properties. Food Research International, (196,) 115130. https://doi.org/10.1016/j.foodres.2024.115130

36. Nilova, L., Ikramov, R. & Malyutenkova, S. (2020). The possibility of using microwaves to obtain extracts from berry press residues and jelly products with bioactive characteristics. Agronomy Research, 18 (S3), 1829-1843. https://doi.org/https://doi.org/10.15159/AR.20.044

37. Poiana, M.-A., Alexa, E. & Mateescu, C. (2012) Tracking antioxidant properties and color changes in low-sugar bilberry jam as effect of processing, storage and pectin concentration. Chemistry Central Journal, 6 (4), 1-11.

38. Queiroz, F., Oliveira, C., Pinho, O.V. & Ferreira, I. (2009) Degradation of anthocyanins and athocyanidins in blueberry jams/stuffed fish. J. Agric. Food Chem., (57), 10712–10717. http://dx.doi.org/10.1021/jf9021948

39. Renna, M., Pace, B., Cefola, M., Santamaria, P., Serio, F. & Gonnella, M. (2013). Comparison of two jam making methods to preserve the quality of colored carrots. LWT - Food Science and Technology, (53), 547-554. http://dx.doi.org/10.1016/j.lwt.2013.03.018

40. Scrob, T., Varodi, S. M., Vintilă, G. A., Casoni, D. & Cimpoiu C. (2022). Estimation of degradation kinetics of bioactive compounds in several lingonberry jams as affected by different sweeteners and storage conditions. Food Chemistry: X, (16), 100471. https://doi.org/10.1016/j.fochx.2022.100471

41. Shinwari, K. Ja. & Rao, P. S. (2018) Stability of bioactive compounds in fruit jam and jelly during processing and storage: A review. Trends in Food Science & Technology, (75), 181-193. https://doi.org/10.1016/j.tifs.2018.02.002

42. Teribia, N., Buvé, C., Bonerz, D., Aschoff, Ju., Goos, P., Hendrickx, M. & Loey A. V. (2021) The effect of thermal processing and storage on the color stability of strawberry puree originating from different cultivars. LWT - Food Science and Technology, (145), 111270. https://doi.org/10.1016/j.lwt.2021.111270

43. Tobal, Th. M. & Rodrigues, L. V. (2019) Effect of storage on the bioactive compounds, nutritional composition and sensory acceptability of pitanga jams. Food Science and Technology, 39 (S. 2), 581-587. https://doi.org/10.1590/fst.27618

44. Velotto, S., Palmeri, R., Alfeo, V., Gugino, I. M., Fallico, B., Spagna, G. & Todaro, A. (2023). The effect of different technologies in pomegranate jam preparation on the phenolic compounds, vitamin C and antioxidant activity. Food Bioscience, (53), 102525. https://doi.org/10.1016/j.fbio.2023.102525

45. Wang, T., Liu, L., Rakhmanova, A., Wang, X., Shan, Yu., Yi, Ya., Liu B., Zhou, Yu. & Lü, X. (2020). Stability of bioactive compounds and in vitro gastrointestinal digestion of red beetroot jam: Effect of processing and storage. Food Bioscience, 38, 100788. https://doi.org/10.1016/j.fbio.2020.100788

46. Zhang, L.-L., Ren, Ji.-N., Zhang, Ya., Li, Ji.-Ji., Liu, Ya-L., Guo, Z.-Ya., Yang, Z.-Yu, Pan, S.-Yi & Fan, G. (2016). Effects of modified starches on the processing properties of heat-resistant blueberry jam. LWT - Food Science and Technology, (72), 447-456. http://dx.doi.org/10.1016/j.lwt.2016.05.018


Review

For citations:


Nilova L.P. Effect of Berry Compositions on Antioxidant Properties during the Production and Storage of Multicomponent Crushed Berries without Sugar. Health, Food & Biotechnology. 2025;7(1):42-54. (In Russ.) https://doi.org/10.36107/hfb.2025.i1.s248

Views: 161


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)