Ультрапереработанные продукты питания: методы снижения их калорийности и повышения пищевой ценности (Обзор предметного поля)
https://doi.org/10.36107/hfb.2025.i2.s258
Аннотация
Введение: Ультрапереработанные пищевые продукты (УПП) становятся всё более заметной частью современного рациона. Их удобство, длительный срок хранения и вкусовые качества объясняют высокий спрос. Однако одновременно растёт обеспокоенность их влиянием на здоровье, особенно в связи с повышенной калорийностью и сниженной пищевой ценностью. Несмотря на большое количество публикаций, до сих пор недостаточно обобщённых данных о том, какие именно компоненты УПП и в каком сочетании наиболее негативно влияют на здоровье, а также какие технологические подходы позволяют смягчить эти последствия. Настоящее исследование направлено на восполнение этого пробела.
Цель исследования: Проанализировать научные данные о составе и свойствах ультрапереработанных продуктов, их влиянии на здоровье потребителей, а также рассмотреть эффективные способы снижения их калорийности и повышения пищевой ценности.
Материалы и методы: В качестве источников использованы научные публикации на русском и английском языках, опубликованные в 2014–2025 гг. Поиск зарубежных работ проводился в базах данных Scopus, PubMed и Web of Science; русскоязычные источники отбирались в системе РИНЦ по релевантным ключевым словам. Отобранные источники были подвергнуты систематизации, критическому анализу и обобщению.
Результаты. Установлено, что частое употребление УПП связано с дисбалансом в рационе - избытком простых углеводов и трансжиров при одновременном дефиците белков, пищевых волокон и микроэлементов. Это увеличивает риск развития хронических неинфекционных заболеваний, включая ожирение, диабет 2 типа и сердечно-сосудистые патологии. Обоснована необходимость снижения энергетической плотности таких продуктов, изменения их текстурных характеристик и обогащения функциональными ингредиентами (витаминами, антиоксидантами, пищевыми волокнами), способствующими более выраженному насыщению и снижению риска переедания. Подчёркивается необходимость комплексного подхода к реформулированию УПП с участием научного сообщества и индустрии.
Выводы: Последовательное сокращение доли ультрапереработанных продуктов в рационе населения и развитие пищевых технологий, направленных на повышение их питательной ценности, являются ключевыми направлениями профилактики хронических заболеваний и укрепления здоровья. Результаты данного обзора могут быть использованы для дальнейших научных исследований, а также представлять интерес для специалистов пищевой промышленности при разработке УПП и созданию функциональных продуктов с низким метаболическим риском
Список литературы
1. Барбараш О. Л., Седых Д. Ю., Петрова Т. С., Кашталап В.В., Цыганкова Д. П.(2022). Здоровое питание во вторичной профилактике после инфаркта миокарда. На чем сделать акцент? Кардиоваскулярная терапия и профилактика, 21(1), 2918. doi:10.15829/1728-8800-2022-2918
2. Бурак, Л. Ч.(2025). Влияние современных способов обработки и стерилизации на качество плодоовощного сырья и соковой продукции. Москва : Общество с ограниченной ответственностью «Научно-издательский центр ИНФРА-М», 236. https://doi.org/10.12737/0.12737/2154991
3. Бурак, Л. Ч.(2024). Использование современных технологий обработки для увеличения срока хранения фруктов и овощей. Обзор предметного поля. Ползуновский вестник,1, 99-119. https://doi.org/10.25712/ASTU.2072-8921.2024.01.013
4. Бурак Л.Ч., Сапач А.Н.(2024) Улучшение технологических свойств продовольственного зерна за счет использования современных технологий: Обзор предметного поля. Health, Food & Biotechnology,6(1),40-64. https://doi.org/10.36107/hfb.2024.i1.s204
5. Бурак, Л. Ч., Сапач А.Н.(2024a) Влияние действия ультразвука на функциональные свойства растительных белков. Обзор предметного поля. Химия растительного сырья, 4, 5-23. https://doi.org/10.14258/jcprm.20240413599
6. Бурак, Л. Ч., Карбанович В.И.(2024b) Влияние валоризованных растительных белков и фенольных соединений на пищевую ценость и усвояемость. Обзор последних достижений. Научное обозрение. Технические науки, 2, 35-41. https://doi.org/10.17513/srts.1464
7. Бурак, Л. Ч.(2023). Обзор разработок биоразлагаемых упаковочных материалов для пищевой промышленности. Ползуновский вестник, 1,91-105 https://doi.org/10.25712/ASTU.2072-8921.2023.01.012
8. Бурак, Л. Ч.(2023a). Использование современных технологий в производстве ферментированных продуктов. Научное обозрение. Технические науки, 5, 5-13. https://doi.org/10.17513/srts.1446
9. Бурак, Л. Ч., Сапач А.Н.(2023). Биологически активные вещества бузины: свойства, методы извлечения и сохранения. Пищевые системы, 6(1), 80-94. https://doi.org/10.21323/2618-9771-2023-6-1-80-94
10. Бурак, Л. Ч., Ермошина Т.В., Королева Л. П.(2023a) Загрязнение почвенной среды микропластиком, факторы влияния и экологические риски. Экология и промышленность России, 27(5), 58-63 https://doi.org/10.18412/1816-0395-2023-5-58-63
11. Бурак, Л. Ч. , Завалей А.П.(2023b). Биоконсервация растительного сырья пробиотиками и полезными микроорганизмами . Научное обозрение. Биологические науки, 2, 40-50. https://doi.org/10.17513/srbs.1327
12. Бурак, Л. Ч.(2022) Использование бузины (Sambucus nigra L.) в пищевой промышленности: состояние и дальнейшие перспективы (Обзор). Химия растительного сырья, 3, 49-69. https://doi.org/10.14258/jcprm.20220310937
13. Друк И. В., Семенова Е. В., Логинова Е. Н., Кореннова О. Ю., Семенкин А. А., Лялюкова Е. А., Надей Е. В.(2022). Факторы риска развития онкопатологии. Экспериментальная и клиническая гастроэнтерология, 205(9), 116–128. DOI: 10.31146/1682-8658-ecg-205-9-116-128
14. Елиашевич С.О., Игнатиади А.С., Нуньес Араухо Д.Д., Мишарова А.П., Ахундова Х.Р., Драпкина О.М.(2024). Попытки качественной оценки углеводного компонента в пище. Эндокринология: новости, мнения, обучение, 13(4), 65–71. https://doi.org/10.33029/2304-9529-2024-13-4-65-71
15. Елиашевич С.О., Мишарова А.П., Драпкина О.М.(2024). Ремиссия сахарного диабета 2 типа: возможности различных стилей питания .Сахарный диабет, 27(2), 168-173. doi: https://doi.org/10.14341/DM13050
16. Ильенкова, Н. А., Чикунов, В. В., & Сергиенко, Д. Ф. (2023). Коррекция питания пациентов, получающих длительную терапию глюкортикостероидами. Астраханский медицинский журнал, 18(2), 16-23 https://doi.org/10.29039/1992-6499-2023-2-16-23
17. Карамнова Н.С., Швабская О.Б. ( 2024) Актуальные акценты рациона питания лиц пожилого возраста: описательный обзор литературы . CardioСоматика, 15(2), 154-170. doi: 10.17816/CS625902
18. Панькова М.Н.(2024). Ожирение и антисократительные эффекты жировой ткани в регуляции тонуса аорты.Тимирязевский биологический журнал, 2(2), 80-85. http://dx.doi.org/10.26897/2949-4710-2024-2-2-80-85
19. Шкрабтак, Н. В.(2022). Взаимосвязь пандемии COVID-19, питания и качества жизни населения. Научное обозрение. Медицинские науки, 4, 73-77. https://doi.org/10.17513/srms.1276
20. Adams, J., & White, M. (2015). Characterisation of UK diets according to degree of food processing and associations with socio-demographics and obesity: Cross-sectional analysis of UK National Diet and Nutrition Survey (2008-12). International Journal of Behavioral Nutrition and Physical Activity, 12, 160.
21. Aggarwal, A., Gupta, S., Rose, C. M., Buszkiewicz, J., Ko, L. K., Mou, J., Cook, A., & Drewnowski, A. (2021). Characterising percentage energy from ultra-processed foods by participant demographics, diet quality and diet cost: Findings from the Seattle Obesity Study (SOS) III. British Journal of Nutrition, 126(5), 773–781. https://doi.org/10.1017/S0007114520004705
22. Aguilera, J. M. (2019). The food matrix: Implications in processing, nutrition and health. Critical Reviews in Food Science and Nutrition, 59(22), 3612–3629. https://doi.org/10.1080/10408398.2018.1502743
23. Aguilera, J. M. (2022). Rational food design and food microstructure. Trends in Food Science & Technology, 122, 256–264. https://doi.org/10.1016/j.tifs.2022.02.006
24. Akhlaghi, M. (2022). The role of dietary fibers in regulating appetite, an overview of mechanisms and weight consequences. Critical Reviews in Food Science and Nutrition, 1–12. Published Online: 04 Oct 2022. https://doi.org/10.1080/10408398.2022.2130160
25. Alegría-Torán, A., Barberá-Sáez, R., & Cilla-Tatay, A. (2015). Bioavailability of minerals in foods. Chapter 3. Handbook of Mineral Elements in Food, M. Guardia, & S. Garrigues (Editors). pp. 41–67. John Wiley and Sons, New York, NY.
26. Ameer, K., Shahbaz, H. M., & Kwon, J. H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety
27. Ashaolu, T. J., Lee, C. C., Ashaolu, J. O., Pourjafar, H., & Jafari, S. M. (2023). Metal-binding peptides and their potential to enhance the absorption and bioavailability of minerals. Food Chemistry, 428, 136678. https://doi.org/10.1016/j.foodchem.2023.136678
28. Aramburu, A., Alvarado-Gamarra, G., Cornejo, R., Curi-Quinto, K., Díaz-Parra, C., Rojas-Limache, G., & Lanata, C. F. (2024). Ultra-processed foods consumption and health-related outcomes: a systematic review of randomized controlled trials. Frontiers in Nutrition, 11. https://doi.org/10.3389/fnut.2024.1421728
29. Astbury, C. C., Penney, T. L., & Adams, J. (2019). Comparison of individuals with low versus high consumption of home-prepared food in a group with universally high dietary quality: A cross-sectional analysis of the UK National Diet & Nutrition Survey (2008-2016). International Journal of Behavioral Nutrition and Physical Activity, 16(1), 9. https://doi.org/10.1186/s12966-019-0768-7
30. Astrup, A., Magkos, F., Bier, D. M., Brenna, J. T., De Oliveira Otto, M. C., Hill, J. O., King, J. C., Mente, A., Ordovas, J. M., Volek, J. S., Yusuf, S., & Krauss, R. M. (2020). Saturated fats and health: A reassessment and proposal for food-based recommendations: JACC state-of-the-art review. Journal of the American College of Cardiology, 76(7), 844–857. https://doi.org/10.1016/j.jacc.2020.05.077
31. Astrup, A., & Monteiro, C. A. (2022). Does the concept of “ultra-processed foods” help inform dietary guidelines, beyond conventional classification systems? NO. American Journal of Clinical Nutrition, 116(6), 1482–1488. https://doi.org/10.1093/ajcn/nqac123
32. Astrup, A., Teicholz, N., Magkos, F., Bier, D. M., Brenna, J. T., King, J. C., Mente, A., Ordovas, J. M., Volek, J. S., Yusuf, S., & Krauss, R. M. (2021). Dietary saturated fats and health: Are the US guidelines evidence-based? Nutrients, 13(10), 3305. https://doi.org/10.3390/nu13103305
33. Auerbach, B. J., Dibey, S., Vallila-Buchman, P., Kratz, M., & Krieger, J. (2018). Review of 100% fruit juice and chronic health conditions: Implications for sugar-sweetened beverage policy. Advances in Nutrition, 9(2), 78–85. https://doi.org/10.1093/advances/nmx006
34. Ayua, E. O., Nkhata, S. G., Namaumbo, S. J., Kamau, E. H., Ngoma, T. N., & Aduol, K. O. (2021). Polyphenolic inhibition of enterocytic starch digestion enzymes and glucose transporters for managing type 2 diabetes may be reduced in food systems. Heliyon, 7(2), e06245. https://doi.org/10.1016/j.heliyon.2021.e06245
35. Azad, M. B., Abou-Setta, A. M., Chauhan, B. F., Rabbani, R., Lys, J., Copstein, L., Mann, A., Jeyaraman, M. M., Reid, A. E., Fiander, M., Mackay, D. S., Mcgavock, J., Wicklow, B., & Zarychanski, R. (2017). Nonnutritive sweeteners and cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Canadian Medical Association Journal, 189(28), E929–E939. https://doi.org/10.1503/cmaj.161390
36. Bai, Y. M., & Gilbert, R. G. (2022). Mechanistic understanding of the effects of pectin on in vivo starch digestion: A review. Nutrients, 14(23), 5107. https://doi.org/10.3390/nu14235107
37. Bajka, B. H., Pinto, A. M., Perez-Moral, N., Saha, S., Ryden, P., Ahn-Jarvis, J., Van Der Schoot, A., Bland, C., Berry, S. E., Ellis, P. R., & Edwards, C. H. (2023). Enhanced secretion of satiety-promoting gut hormones in healthy humans after consumption of white bread enriched with cellular chickpea flour: A randomized crossover study. American Journal of Clinical Nutrition, 117(3), 477–489. https://doi.org/10.1016/j.ajcnut.2022.12.008
38. Ballini, A., Charitos, I. A., Cantore, S., Topi, S., Bottalico, L., & Santacroce, L. (2023). About functional foods: The probiotics and prebiotics state of art. Antibiotics, 12(4), 635. https://doi.org/10.3390/antibiotics12040635
39. Baraldi, L. G., Steele, E. M., Canella, D. S., & Monteiro, C. A. (2018). Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: Evidence from a nationally representative cross-sectional study. BMJ Open, 8(3), e020574. https://doi.org/10.1136/bmjopen-2017-020574
40. Bastings, J., Venema, K., Blaak, E. E., & Adam, T. C. (2023). Influence of the gut microbiota on satiety signaling. Trends in Endocrinology and Metabolism, 34(4), 243–255. https://doi.org/10.1016/j.tem.2023.02.003
41. Becker, P. M., & Yu, P. Q. (2013). What makes protein indigestible from tissue-related, cellular, and molecular aspects? Molecular Nutrition & Food Research, 57(10), 1695–1707. https://doi.org/10.1002/mnfr.201200592
42. Belc, N., Smeu, I., Macri, A., Vallauri, D., & Flynn, K. (2019). Reformulating foods to meet current scientific knowledge about salt, sugar and fats. Trends in Food Science & Technology, 84, 25–28. https://doi.org/10.1016/j.tifs.2018.11.002
43. Belobrajdic, D. P., Regina, A., Klingner, B., Zajac, I., Chapron, S., Berbezy, P., & Bird, A. R. (2019). High-amylose wheat lowers the postprandial glycemic response to bread in healthy adults: A randomized controlled crossover trial. Journal of Nutrition, 149(8), 1335–1345. https://doi.org/10.1093/jn/nxz067
44. Bel-Rhlid, R., Berger, R. G., & Blank, I. (2018). Bio-mediated generation of food flavors—Towards sustainable flavor production inspired by nature. Trends in Food Science & Technology, 78, 134–143. https://doi.org/10.1016/j.tifs.2018.06.004
45. Bensid, A., El Abed, N., Houicher, A., Regenstein, J. M., & Ozogul, F. (2022). Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food—A review. Critical Reviews in Food Science and Nutrition, 62(11), 2985–3001. https://doi.org/10.1080/10408398.2020.1862046
46. Bhattarai, R. R., Dhital, S., Mense, A., Gidley, M. J., & Shi, Y. C. (2018). Intact cellular structure in cereal endosperm limits starch digestion in vitro. Food Hydrocolloids, 81, 139–148. https://doi.org/10.1016/j.foodhyd.2018.02.027
47. Bohl, M., Gregersen, S., Zhong, Y. Y., Hebelstrup, K. H., & Hermansen, K. (2023). Beneficial glycaemic effects of high-amylose barley bread compared to wheat bread in type 2 diabetes. European Journal of Clinical Nutrition, 78(3), 243–250. https://doi.org/10.1038/s41430-023-01364-x
48. Bojarczuk, A., Skąpska, S., Khaneghah, A. M., & Marszałek, K. (2022). Health benefits of resistant starch: A review of the literature. Journal of Functional Foods, 93, 105094. https://doi.org/10.1016/j.jff.2022.105094
49. Botella-Martínez, C., Munoz-Tebar, N., Lucas-González, R., Perez-Alvarez, J. A., Fernandez-López, J., & Viuda-Martos, M. (2023). Assessment of chemical, physico-chemical and sensory properties of low-sodium beef burgers formulated with flours from different mushroom types. Foods, 12(19), 3591. https://doi.org/10.3390/foods12193591
50. Cao, Y., Liu, H. L., Qin, N. B., Ren, X. M., Zhu, B. W., & Xia, X. D. (2020). Impact of food additives on the composition and function of gut microbiota: A review. Trends in Food Science & Technology, 99, 295–310. https://doi.org/10.1016/j.tifs.2020.03.006
51. Carlson, J., & Slavin, J. (2016). Health benefits of fibre, prebiotics and probiotics: A review of intestinal health and related health claims. Quality Assurance and Safety of Crops & Foods, 8(4), 539–553. https://doi.org/10.3920/qas2015.0791
52. Carocho, M., Barreiro, M. F., Morales, P., & Ferreira, I. (2014). Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety, 13(4), 377–399. https://doi.org/10.1111/1541-4337.12065
53. Carrillo, C., Buvé, C., Panozzo, A., Grauwet, T., & Hendrickx, M. (2017). Role of structural barriers in the in vitro bioaccessibility of anthocyanins in comparison with carotenoids. Food Chemistry, 227, 271–279. https://doi.org/10.1016/j.foodchem.2017.01.062
54. Chassaing, B., Koren, O., Goodrich, J. K., Poole, A. C., Srinivasan, S., Ley, R. E., & Gewirtz, A. T. (2015). Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, 519, 92–96. https://doi.org/10.1038/nature14232
55. Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M., & Gewirtz, A. T. (2017). Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut, 66(8), 1414–1427. https://doi.org/10.1136/gutjnl-2016-313099
56. Chazelas, E., Druesne-Pecollo, N., Esseddik, Y., De Edelenyi, F. S., Agaesse, C., De Sa, A., Lutchia, R., Rebouillat, P., Srour, B., Debras, C., Wendeu-Foyet, G., Huybrechts, I., Pierre, F., Coumoul, X., Julia, C., Kesse-Guyot, E., Allès, B., Galan, P., Hercberg, S., … Touvier, M. (2021). Exposure to food additive mixtures in 106,000 French adults from the NutriNet-Sante cohort. Scientific Reports, 11(1), 19680. https://doi.org/10.1038/s41598-021-98496-6
57. Chen, Y., Stieger, M., Capuano, E., Forde, C. G., Van Der Haar, S., Ummels, M., Van Den Bosch, H., & De Wijk, R. (2022). Influence of oral processing behaviour and bolus properties of brown rice and chickpeas on in vitro starch digestion and postprandial glycaemic response. European Journal of Nutrition, 61(8), 3961–3974. https://doi.org/10.1007/s00394-022-02935-7
58. Chi, C. D., Shi, M. M., Zhao, Y. T., Chen, B. L., He, Y. J., & Wang, M. Y. (2022). Dietary compounds slow starch enzymatic digestion: A review. Frontiers in Nutrition, 9, 1004966. https://doi.org/10.3389/fnut.2022.1004966
59. Christofides, E. A. (2021). POINT: Artificial sweeteners and obesity—Not the solution and potentially a problem. Endocrine Practice, 27(10), 1052–1055. https://doi.org/10.1016/j.eprac.2021.08.001
60. Chung, C., Smith, G., Degner, B., & McClements, D. J. (2016). Reduced fat food emulsions: Physicochemical, sensory, and biological aspects. Critical Reviews in Food Science and Nutrition, 56(4), 650–685. https://doi.org/10.1080/10408398.2013.792236
61. Cifuentes, L., & Acosta, A. (2022). Homeostatic regulation of food intake. Clinics and Research in Hepatology and Gastroenterology, 46(2), 101794. https://doi.org/10.1016/j.clinre.2021.101794
62. Colosimo, R., Warren, F. J., Edwards, C. H., Ryden, P., Dyer, P. S., Finnigan, T. J. A., & Wilde, P. J. (2021). Comparison of the behavior of fungal and plant cell wall during gastrointestinal digestion and resulting health effects: A review. Trends in Food Science & Technology, 110, 132–141. https://doi.org/10.1016/j.tifs.2021.02.001
63. Contreras-Rodriguez, O., Solanas, M., & Escorihuela, R. M. (2022). Dissecting ultra-processed foods and drinks: Do they have a potential to impact the brain? Reviews in Endocrine and Metabolic Disorders, 23(4), 697–717. https://doi.org/10.1007/s11154-022-09711-2
64. Cordova, R., Viallon, V., Fontvieille, E., Peruchet-Noray, L., Jansana, A., Wagner, K.-H., Kyrø, C., Tjønneland, A., Katzke, V., Bajracharya, R., Schulze, M. B., Masala, G., Sieri, S., Panico, S., Ricceri, F., Tumino, R., Boer, J. M. A., Verschuren, W. M. M., Van Der Schouw, Y. T., … Freisling, H. (2023). Consumption of ultra-processed foods and risk of multimorbidity of cancer and cardiometabolic diseases: A multinational cohort study. The Lancet Regional Health—Europe, 35, 100771. https://doi.org/10.1016/j.lanepe.2023.100771
65. Corrado, M., Ahn-Jarvis, J. H., Fahy, B., Savva, G. M., Edwards, C. H., & Hazard, B. A. (2022). Effect of high-amylose starch branching enzyme II wheat mutants on starch digestibility in bread, product quality, postprandial satiety and glycaemic response. Food & Function, 13(3), 1617–1627. https://doi.org/10.1039/d1fo03085j
66. Coyle, D. H., Huang, L., Shahid, M., Gaines, A., Di Tanna, G. L., Louie, J. C. Y. U., Pan, X., Marklund, M., Neal, B., & Wu, J. H. Y. (2022). Socio-economic difference in purchases of ultra-processed foods in Australia: An analysis of a nationally representative household grocery purchasing panel. International Journal of Behavioral Nutrition and Physical Activity, 19(1), 148. https://doi.org/10.1186/s12966-022-01389-8
67. Cverenkarova, K., Valachovicova, M., Mackulak, T., Zemlicka, L., & Birosova, L. (2021). Microplastics in the food chain. Life, 11(12), 1349. https://doi.org/10.3390/life11121349
68. Dahiya, D., & Nigam, P. S. (2022). Probiotics, prebiotics, synbiotics, and fermented foods as potential biotics in nutrition improving health via microbiome-gut-brain axis. Fermentation, 8(7), 303. https://doi.org/10.3390/fermentation8070303
69. da Silva, R. C., Ferdaus, M. J., Foguel, A., & Silva, T. L. T. (2023). Oleogels as a fat substitute in food: A current review. Gels, 9(3), 180. https://doi.org/10.3390/gels9030180
70. Davis, C. (2014). Evolutionary and neuropsychological perspectives on addictive behaviors and addictive substances: Relevance to the “food addiction” construct. Substance Abuse and Rehabilitation, 5, 129–137. https://doi.org/10.2147/sar.S56835
71. de Graaf, K. (2020). Psychobiology behind the effect of ultraprocessed food consumption on energy intake. Paper presented at the EUFIC Symposium. https://www.eufic.org/en/newsroom/article/processed-foods-symposium-how-to-communicate-about-what-we-dont-know
72. de Mejia, E. G., Zhang, Q. Z., Penta, K., Eroglu, A., & Lila, M. A. (2020). The colors of health: Chemistry, bioactivity, and market demand for colorful foods and natural food sources of colorants. In M. P. Doyle & D. J. McClements (Eds.), Annual review of food science and technology (Vol., 11, pp. 145–182). Annual Reviews, San Mateo, CA.
73. Di Nunzio, M., Loffi, C., Montalbano, S., Chiarello, E., Dellafiora, L., Picone, G., Antonelli, G., Tedeschi, T., Buschini, A., Capozzi, F., Galaverna, G., & Bordoni, A. (2022). Cleaning the label of cured meat; effect of the replacement of nitrates/nitrites on nutrients bioaccessibility, peptides formation, and cellular toxicity of in vitro digested salami. International Journal of Molecular Sciences, 23(20), 12555. https://doi.org/10.3390/ijms232012555
74. Dumitriu, O. B., & Dima, S. (2016). Biopolymer-based techniques for encapsulation of phytochemicals bioacive in food and drug. Materiale Plastice, 53(1), 126–129.
75. Eaton, J. C., & Iannotti, L. L. (2017). Genome-nutrition divergence: Evolving understanding of the malnutrition spectrum. Nutrition Reviews, 75(11), 934–950. https://doi.org/10.1093/nutrit/nux055
76. Edwards, C. H., Ryden, P., Pinto, A. M., Van Der Schoot, A., Stocchi, C., Perez-Moral, N., Butterworth, P. J., Bajka, B., Berry, S. E., Hill, S. E., & Ellis, P. R. (2020). Chemical, physical and glycaemic characterisation of PulseON®: A novel legume cell-powder ingredient for use in the design of functional foods. Journal of Functional Foods, 68, 103918. https://doi.org/10.1016/j.jff.2020.103918
77. Elizabeth, L., Machado, P., Zinöcker, M., Baker, P., & Lawrence, M. (2020). Ultra-processed foods and health outcomes: A narrative review. Nutrients, 12(7), 1955. https://www.mdpi.com/2072-6643/12/7/1955
78. Engelen, L., Fontijn-Tekamp, A., & van der Bilt, A. (2005). The influence of product and oral characteristics on swallowing. Archives of Oral Biology, 50(8), 739–746. https://doi.org/10.1016/j.archoralbio.2005.01.004
79. Estruch, R., Vendrell, E., Ruiz-León, A. M., Casas, R., Castro-Barquero, S., & Alvarez, X. (2020). Reformulation of pastry products to improve effects on health. Nutrients, 12(6), 1709. https://doi.org/10.3390/nu12061709
80. Fanzo, J., McLaren, R., Bellows, A., & Carducci, B. (2023). Challenges and opportunities for increasing the effectiveness of food reformulation and fortification to improve dietary and nutrition outcomes. Food Policy, 119, 102515. https://doi.org/10.1016/j.foodpol.2023.102515
81. Fardet, A., Leenhardt, F., Lioger, D., Scalbert, A., & Rémésy, C. (2006). Parameters controlling the glycaemic response to breads. Nutrition Research Reviews, 19(1), 18–25. https://doi.org/10.1079/nrr2006118
82. Fardet, A., Méjean, C., Labouré, H., Andreeva, V. A., & Feron, G. (2017). The degree of processing of foods which are most widely consumed by the French elderly population is associated with satiety and glycemic potentials and nutrient profiles. Food & Function, 8(2), 651–658. https://doi.org/10.1039/c6fo01495j
83. Fardet, A., & Rock, E. (2019). Ultra-processed foods: A new holistic paradigm? Trends in Food Science & Technology, 93, 174–184. https://doi.org/10.1016/j.tifs.2019.09.016
84. Fellows, P. J. (2017). A brief history of food processing introduction. In Food processing technology: Principles and practice ( 4th ed., pp. XV–XXIII). Cambridge, UK.
85. Ferreira, V. C., Barroso, T., Castro, L. E. N., da Rosa, R. G., & Oliveira, L. D. (2023). An overview of prebiotics and their applications in the food industry. European Food Research and Technology, 249(11), 2957–2976. https://doi.org/10.1007/s00217-023-04341-7
86. Ferysiuk, K., & Wójciak, K. M. (2020). Reduction of nitrite in meat products through the application of various plant-based ingredients. Antioxidants, 9(8), 711. https://doi.org/10.3390/antiox9080711
87.
88.
89. Foggiaro, D., Domínguez, R., Pateiro, M., Cittadini, A., Munekata, P. E. S., Campagnol, P. C. B., Fraqueza, M. J., De Palo, P., & Lorenzo, J. M. (2022). Use of healthy emulsion hydrogels to improve the quality of pork burgers. Foods, 11(4), 596. https://doi.org/10.3390/foods11040596
90. Forde, C. G., & Decker, E. A. (2022). The importance of food processing and eating behavior in promoting healthy and sustainable diets. Annual Review of Nutrition, 42, 377–399. https://doi.org/10.1146/annurev-nutr-062220-030123
91. Forde, C. G., & de Graaf, K. (2022). Influence of sensory properties in moderating eating behaviors and food intake. Frontiers in Nutrition, 9, 841444. https://doi.org/10.3389/fnut.2022.841444
92. Fu, Q. Q., Yang, J. T., Lv, L. Y., Shen, T. R., Peng, Y., & Zhang, W. (2023). Effects of replacing chicken breast meat with Agaricus bisporus mushrooms on the qualities of emulsion-type sausages. LWT, 184, 114983. https://doi.org/10.1016/j.lwt.2023.114983
93. Gearhardt, A. N., & DiFeliceantonio, A. G. (2023). Highly processed foods can be considered addictive substances based on established scientific criteria. Addiction, 118(4), 589–598. https://doi.org/10.1111/add.16065
94. Geng, Y., Mou, Y., Xie, Y., Ji, J., Chen, F., Liao, X., Hu, X., & Ma, L. (2023). Dietary advanced glycation end products: An emerging concern for processed foods. Food Reviews International, 40(1), 417–433. https://doi.org/10.1080/87559129.2023.2169867
95. Gerasimidis, K., Bryden, K., Chen, X., Papachristou, E., Verney, A., Roig, M., Hansen, R., Nichols, B., Papadopoulou, R., & Parrett, A. (2020). The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. European Journal of Nutrition, 59(7), 3213–3230. https://doi.org/10.1007/s00394-019-02161-8
96. Giuntini, E. B., Sardá, F. A. H., & de Menezes, E. W. (2022). The effects of soluble dietary fibers on glycemic response: An overview and futures perspectives. Foods, 11(23), 3934. https://doi.org/10.3390/foods11233934
97. Gonzalez-Anton, C., Rico, M. C., Sanchez-Rodriguez, E., Ruiz-Lopez, M. D., Gil, A., & Mesa, M. D. (2015). Glycemic responses, appetite ratings and gastrointestinal hormone responses of most common breads consumed in Spain. A randomized control trial in healthy humans. Nutrients, 7(6), 4033–4053. https://www.mdpi.com/2072-6643/7/6/4033
98. González-López, M. E., Calva-Estrada, S. D., Gradilla-Hernández, M. S., & Barajas-Alvarez, P. (2023). Current trends in biopolymers for food packaging: A review. Frontiers in Sustainable Food Systems, 7, 1225371. https://doi.org/10.3389/fsufs.2023.1225371
99. Greenwood, D. C., Threapleton, D. E., Evans, C. E. L., Cleghorn, C. L., Nykjaer, C., Woodhead, C., & Burley, V. J. (2014). Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: Systematic review and dose-response meta-analysis of prospective studies. British Journal of Nutrition, 112(5), 725–734. https://doi.org/10.1017/s0007114514001329
100. Gu, Q. Z., Yin, Y., Yan, X. J., Liu, X. B., Liu, F. G., & McClements, D. J. (2022). Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review. Advances in Colloid and Interface Science, 309, 102781. https://doi.org/10.1016/j.cis.2022.102781
101. Gupta, S., Rose, C. M., Buszkiewicz, J., Ko, L. K., Mou, J., Cook, A., Aggarwal, A., & Drewnowski, A. (2021). Characterising percentage energy from ultra-processed foods by participant demographics, diet quality and diet cost: Findings from the Seattle Obesity Study (SOS) III. British Journal of Nutrition, 126(5), 773–781. https://doi.org/10.1017/s0007114520004705
102. Ha, O. R., Lim, S. L., Bruce, J. M., & Bruce, A. S. (2019). Unhealthy foods taste better among children with lower self-control. Appetite, 139, 84–89. https://doi.org/10.1016/j.appet.2019.04.015
103. Hägele, F. A., Büsing, F., Nas, A., Aschoff, J., Gnädinger, L., Schweiggert, R., Carle, R., & Bosy-Westphal, A. (2018). High orange juice consumption with or in-between three meals a day differently affects energy balance in healthy subjects. Nutrition & Diabetes, 8, 19. https://doi.org/10.1038/s41387-018-0031-3
104. Hamano S, Sawada M, Aihara M, Sakurai Y, Sekine R, Usami S, Kubota N, Yamauchi T.(2024). Ultra-processed foods cause weight gain and increased energy intake associated with reduced chewing frequency: A randomized, open-label, crossover study. Diabetes Obes Meta, 26(11),5431-5443. https://doi.org/10.1111/dom.15922
105. Hamel, V., Nardocci, M., Flexner, N., Bernstein, J., L'Abbé, M. R., & Moubarac, J. C. (2022). Consumption of ultra-processed foods is associated with free sugars intake in the Canadian population. Nutrients, 14(3), 708. https://doi.org/10.3390/nu14030708
106. Han, N., Fan, J. L., Chen, N., & Chen, H. Q. (2022). Effect of ball milling treatment on the structural, physicochemical and digestive properties of wheat starch, A- and B-type starch granules. Journal of Cereal Science, 104, 103439. https://doi.org/10.1016/j.jcs.2022.103439
107. Hancock, S., Zinn, C., & Schofield, G. (2020). The consumption of processed sugar- and starch-containing foods, and dental caries: A systematic review. European Journal of Oral Sciences, 128(6), 467–475. https://doi.org/10.1111/eos.12743
108. Harsha, P., & Lavelli, V. (2019). Use of grape pomace phenolics to counteract endogenous and exogenous formation of advanced glycation end-products. Nutrients, 11(8), 1917. https://doi.org/10.3390/nu11081917
109. Hayes, A. M. R., Gozzi, F., Diatta, A., Gorissen, T., Swackhamer, C., Bellmann, S., & Hamaker, B. R. (2021). Some pearl millet-based foods promote satiety or reduce glycaemic response in a crossover trial. British Journal of Nutrition, 126(8), 1168–1178. https://doi.org/10.1017/s0007114520005036
110. He, T., Zhang, X., Zhao, L., Zou, J., Qiu, R., Liu, X., Hu, Z., & Wang, K. (2023a). Insoluble dietary fiber from wheat bran retards starch digestion by reducing the activity of alpha-amylase. Food Chemistry, 426, 136624. https://doi.org/10.1016/j.foodchem.2023.136624
111. He, X., Chen, L. Y., Pu, Y. J., Wang, H. X., Cao, J. K., & Jiang, W. B. (2023b). Fruit and vegetable polyphenols as natural bioactive inhibitors of pancreatic lipase and cholesterol esterase: Inhibition mechanisms, polyphenol influences, application challenges. Food Bioscience, 55, 103054. https://doi.org/10.1016/j.fbio.2023.103054
112. He, Y., Wang, B., Wen, L., Wang, F., Yu, H., Chen, D., Su, X., & Zhang, C. (2022). Effects of dietary fiber on human health. Food Science and Human Wellness, 11(1), 1–10. https://doi.org/10.1016/j.fshw.2021.07.001
113. Helou, C., Gadonna-Widehem, P., Robert, N., Branlard, G., Thebault, J., Librere, S., Jacquot, S., Mardon, J., Piquet-Pissaloux, A., Chapron, S., Chatillon, A., Niquet-Léridon, C., & Tessier, F. J. (2016). The impact of raw materials and baking conditions on Maillard reaction products, thiamine, folate, phytic acid and minerals in white bread. Food & Function, 7(6), 2498–2507. https://doi.org/10.1039/c5fo01341k
114. Heuven, L. A. J., de Graaf, K., Forde, C. G., & Bolhuis, D. P. (2023). Al dente or well done? How the eating rate of a pasta dish can be predicted by the eating rate of its components. Food Quality and Preference, 108, 104883. https://doi.org/10.1016/j.foodqual.2023.104883
115. Hirt, N., & Body-Malapel, M. (2020). Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature. Particle and Fibre Toxicology, 17(1), 1–22. https://doi.org/10.1186/s12989-020-00387-7
116. Ho, K., Ferruzzi, M. G., & Wightman, J. D. (2020). Potential health benefits of (poly)phenols derived from fruit and 100% fruit juice. Nutrition Reviews, 78(2), 145–174. https://doi.org/10.1093/nutrit/nuz041
117. Hoehn, D., Margallo, M., Laso, J., Fernández-Ríos, A., Ruiz-Salmón, I., & Aldaco, R. (2022). Energy systems in the food supply chain and in the food loss and waste valorization processes: A systematic review. Energies, 15(6), 2234. https://doi.org/10.3390/en15062234
118. Hollis, J. H. (2018). The effect of mastication on food intake, satiety and body weight. Physiology & Behavior, 193, 242–245. https://doi.org/10.1016/j.physbeh.2018.04.027
119. Holm, J., & Bjorck, I. (1992). Bioavailability of starch in various wheat-based bread products—Evaluation of metabolic responses in healthy-subjects and rate and extent of invitro starch digestion. American Journal of Clinical Nutrition, 55(2), 420–429. https://doi.org/10.1093/ajcn/55.2.420
120. Hu, X. Y., Zhou, H. L., & McClements, D. J. (2022). Utilization of emulsion technology to create plant-based adipose tissue analogs: Soy-based high internal phase emulsions. Food Structure, 33, 100290. https://doi.org/10.1016/j.foostr.2022.100290
121. Huang, S. H., Huang, M., & Dong, X. L. (2023). Advanced glycation end products in meat during processing and storage: A review. Food Reviews International, 39(3), 1716–1732. https://doi.org/10.1080/87559129.2021.1936003
122. Hutchings, S. C., Low, J. Y. Q., & Keast, R. S. J. (2019). Sugar reduction without compromising sensory perception. An impossible dream? Critical Reviews in Food Science and Nutrition, 59(14), 2287–2307. https://doi.org/10.1080/10408398.2018.1450214
123. Imamura, F., O'Connor, L., Ye, Z., Mursu, J., Hayashino, Y., Bhupathiraju, S. N., & Forouhi, N. G. (2015). Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ, 351, h3576. https://doi.org/10.1136/bmj.h3576
124. Iriondo-DeHond, M., Miguel, E., & Del Castillo, M. D. (2018). Food byproducts as sustainable ingredients for innovative and healthy dairy foods. Nutrients, 10(10), 1358. https://doi.org/10.3390/nu10101358
125. Jacobsen, C. (2015). Some strategies for the stabilization of long chain n-3 PUFA-enriched foods: A review. European Journal of Lipid Science and Technology, 117(11), 1853–1866. https://doi.org/10.1002/ejlt.201500137
126. James-Martin, G., Baird, D. L., Hendrie, G. A., Bogard, J., Anastasiou, K., Brooker, P. G., Wiggins, B., Williams, G., Herrero, M., Lawrence, M., Lee, A. J., & Riley, M. D. (2022). Environmental sustainability in national food-based dietary guidelines: A global review. Lancet Planetary Health, 6(12), E977–E986.
127. Jesionowska, M., Ovadia, J., Hockemeyer, K., Clews, A. C., & Xu, Y. (2023). EPA and DHA in microalgae: Health benefits, biosynthesis, and metabolic engineering advances. Journal of the American Oil Chemists Society, 100(11), 831–842. https://doi.org/10.1002/aocs.12718
128. Jeske, S., Zannini, E., & Arendt, E. K. (2017). Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes. Plant Foods for Human Nutrition, 72(1), 26–33. https://doi.org/10.1007/s11130-016-0583-0
129. Jin, M. K., Wang, X., Ren, T., Wang, J., & Shan, J. J. (2021). Microplastics contamination in food and beverages: Direct exposure to humans. Journal of Food Science, 86(7), 2816–2837. https://doi.org/10.1111/1750-3841.15802
130. Jones, O. G., & McClements, D. J. (2010). Functional biopolymer particles: Design, fabrication, and applications. Comprehensive Reviews in Food Science and Food Safety, 9(4), 374–397. https://doi.org/10.1111/j.1541-4337.2010.00118.x
131. Joye, I. (2019). Protein digestibility of cereal products. Foods, 8(6), 199. https://doi.org/10.3390/foods8060199
132. Juul, F., Parekh, N., Martinez-Steele, E., Monteiro, C. A., & Chang, V. W. (2022). Ultra-processed food consumption among US adults from 2001 to 2018. American Journal of Clinical Nutrition, 115(1), 211–221. https://doi.org/10.1093/ajcn/nqab305
133. Juul, F., Vaidean, G., & Parekh, N. (2021). Ultra-processed foods and cardiovascular diseases: Potential mechanisms of action. Advances in Nutrition, 12(5), 1673–1680. https://doi.org/10.1093/advances/nmab049
134. Kadac-Czapska, K., Knez, E., Gierszewska, M., Olewnik-Kruszkowska, E., & Grembecka, M. (2023). Microplastics derived from food packaging waste—Their origin and health risks. Materials, 16(2), 674. https://doi.org/10.3390/ma16020674
135. Kan, L. J., Oliviero, T., Verkerk, R., Fogliano, V., & Capuano, E. (2020). Interaction of bread and berry polyphenols affects starch digestibility and polyphenols bio-accessibility. Journal of Functional Foods, 68, 103924. https://doi.org/10.1016/j.jff.2020.103924
136. Kaseke, T., Lujic, T., & Velickovic, T. C. (2023). Nano- and microplastics migration from plastic food packaging into dairy products: Impact on nutrient digestion, absorption, and metabolism. Foods, 12(16), 3043. https://doi.org/10.3390/foods12163043
137. Kaur, K., Sharma, R., & Singh, S. (2020). Bioactive composition and promising health benefits of natural food flavors and colorants: Potential beyond their basic functions. Pigment & Resin Technology, 49(2), 110–118. https://doi.org/10.1108/prt-02-2019-0009
138. Kelly, A. L., Baugh, M. E., Oster, M. E., & DiFeliceantonio, A. G. (2022). The impact of caloric availability on eating behavior and ultra-processed food reward. Appetite, 178, 106274. https://doi.org/10.1016/j.appet.2022.106274
139. Kerry, R. G., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002
140. Kew, B., Holmes, M., Stieger, M., & Sarkar, A. (2020). Review on fat replacement using protein-based microparticulated powders or microgels: A textural perspective. Trends in Food Science & Technology, 106, 457–468. https://doi.org/10.1016/j.tifs.2020.10.032
141. Khandpur, N., Cediel, G., Obando, D. A., Jaime, P. C., & Parra, D. C. (2020). Sociodemographic factors associated with the consumption of ultra-processed foods in Colombia. Revista De Saude Publica, 54, 19. https://doi.org/10.11606/s1518-8787.2020054001176
142. Korompokis, K., & Delcour, J. A. (2023). Components of wheat and their modifications for modulating starch digestion: Evidence from in vitro and in vivo studies. Journal of Cereal Science, 113, 103743. https://doi.org/10.1016/j.jcs.2023.103743
143. Korompokis, K., Deleu, L. J., & Delcour, J. A. (2021). The impact of incorporating coarse wheat farina containing intact endosperm cells in a bread recipe on bread characteristics and starch digestibility. Journal of Cereal Science, 102, 103333. https://doi.org/10.1016/j.jcs.2021.103333
144. Kumar, A. P. N., Kumar, M., Jose, A., Tomer, V., Oz, E., Proestos, C., Zeng, M., Elobeid, T. K. S., & Oz, F. (2023a). Major phytochemicals: Recent advances in health benefits and extraction method. Molecules, 28(2), 887. https://doi.org/10.3390/molecules28020887
145. Kumar, P., Mehta, N., Abubakar, A. A., Verma, A. K., Kaka, U., Sharma, N., Sazili, A. Q., Pateiro, M., Kumar, M., & Lorenzo, J. M. (2023b). Potential alternatives of animal proteins for sustainability in the food sector. Food Reviews International, 39(8), 5703–5728. https://doi.org/10.1080/87559129.2022.2094403
146. Kyriakopoulou, K., Keppler, J. K., & van der Goot, A. J. (2021). Functionality of ingredients and additives in plant-based meat analogues. Foods, 10(3), 600. https://doi.org/10.3390/foods10030600
147. Labuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107, 227–247. https://doi.org/10.1016/j.foodres.2018.02.026
148. Laguerre, M., Lecomte, J., & Villeneuve, P. (2007). Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Progress in Lipid Research, 46(5), 244–282. https://doi.org/10.1016/j.plipres.2007.05.002
149. Laudan, R. (2019). A Plea for Culinary Modernism Why We Should Love Fast, Modern, Processed Food (With a New Postscript). In The Gastronomica Reader, D. Goldstein, (Ed.), The University of California Press, Berkeley, pp. 280–291. https://doi.org/10.1525/9780520945753
150. Lauria, F., Russo, M. D., Formisano, A., De Henauw, S., Hebestreit, A., Hunsberger, M., Krogh, V., Intemann, T., Lissner, L., Molnar, D., Moreno, L. A., Reisch, L. A., Tornaritis, M., Veidebaum, T., Williams, G., Siani, A., & Russo, P. (2021). Ultra-processed foods consumption and diet quality of European children, adolescents and adults: Results from the I.Family study. Nutrition Metabolism and Cardiovascular Diseases, 31(11), 3031–3043. https://doi.org/10.1016/j.numecd.2021.07.019
151. Li, P., Zhang, B., & Dhital, S. (2019). Starch digestion in intact pulse cells depends on the processing induced permeability of cell walls. Carbohydrate Polymers, 225, 115204. https://doi.org/10.1016/j.carbpol.2019.115204
152. Li, Y. O., González, V. P. D., & Diosady, L. L. (2014). Microencapsulation of Vitamins, Minerals, and Nutraceuticals for Food Applications. In: Microencapsulation in the Food Industry, R. Sobel, (Ed.)., Academic Press, New York, NY. pp. 501–522. https://doi.org/10.1016/B978-0-12-404568-2.00038-8
153. Liu, F., Li, M., Wang, Q., Yan, J., Han, S., Ma, C., Ma, P., Liu, X., & Mcclements, D. J. (2022). Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Critical Reviews in Food Science and Nutrition, 63(23), 6423–6444. https://doi.org/10.1080/10408398.2022.2033683
154. López-García, G., Dublan-García, O., Arizmendi-Cotero, D., & Oliván, L. M. G. (2022). Antioxidant and antimicrobial peptides derived from food proteins. Molecules, 27(4), 1343. https://doi.org/10.3390/molecules27041343
155. Ludwig, D. S., Apovian, C. M., Aronne, L. J., Astrup, A., Cantley, L. C., Ebbeling, C. B., Heymsfield, S. B., Johnson, J. D., King, J. C., Krauss, R. M., Taubes, G., Volek, J. S., Westman, E. C., Willett, W. C., Yancy, W. S., & Friedman, M. I. (2022). Competing paradigms of obesity pathogenesis: Energy balance versus carbohydrate-insulin models. European Journal of Clinical Nutrition, 76(9), 1209–1221. https://doi.org/10.1038/s41430-022-01179-2
156. Luhovyy, B. L., Mollard, R. C., Yurchenko, S., Nunez, M. F., Berengut, S., Liu, T. T., Smith, C. E., Pelkman, C. L., & Anderson, G. H. (2014). The effects of whole grain high-amylose maize flour as a source of resistant starch on blood glucose, satiety, and food intake in young men. Journal of Food Science, 79(12), H2550–H2556. https://doi.org/10.1111/1750-3841.12690
157. Ma, L. X., Tu, H. J., & Chen, T. T. (2023). Postbiotics in human health: A narrative review. Nutrients, 15(2), 291. https://doi.org/10.3390/nu15020291
158. Machín, L., Antúnez, L., Curutchet, M. R., & Ares, G. (2020). The heuristics that guide healthiness perception of ultra-processed foods: A qualitative exploration. Public Health Nutrition, 23(16), 2932–2940. https://doi.org/10.1017/s1368980020003158
159. Maffini, M. V., Neltner, T. G., & Vogel, S. (2017). We are what we eat: Regulatory gaps in the United States that put our health at risk. PLOS Biology, 15(12), e2003578. https://doi.org/10.1371/journal.pbio.2003578
160. Mandalari, G., Grundy, M. M.-L., Grassby, T., Parker, M. L., Cross, K. L., Chessa, S., Bisignano, C., Barreca, D., Bellocco, E., Laganà, G., Butterworth, P. J., Faulks, R. M., Wilde, P. J., Ellis, P. R., & Waldron, K. W. (2014). The effects of processing and mastication on almond lipid bioaccessibility using novel methods of in vitro digestion modelling and micro-structural analysis. British Journal of Nutrition, 112(9), 1521–1529. https://doi.org/10.1017/s0007114514002414
161. Maddaloni, L.; Gobbi, L.; Vinci, G.; Prencipe, S.A. Natural Compounds from Food By-Products in Preservation Processes: An Overview. Processes 2025, 13, 93. https://doi.org/10.3390/pr13010093
162. Marino, M., Puppo, F., Del Bo, C., Vinelli, V., Riso, P., Porrini, M., & Martini, D. (2021). A systematic review of worldwide consumption of ultra-processed foods: Findings and criticisms. Nutrients, 13(8), 2778. https://doi.org/10.3390/nu13082778
163. McClements, D. J. (2021). Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Progress in Lipid Research, 81, 101081. https://doi.org/10.1016/j.plipres.2020.101081
164. McClements, D. J. (2023a). MeatLess: The next food revolution. Springer Scientific.
165. McClements, D. J. (2023b). Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Comprehensive Reviews in Food Science and Food Safety, 22(5), 3531–3559. https://doi.org/10.1111/1541-4337.13204
166. McClements, D. J. (2024). Designing healthier and more sustainable ultraprocessed foods. Comprehensive Reviews in Food Science and Food Safety, 23, e13331. https://doi.org/10.1111/1541-4337.13331
167. McClements, D. J., Bai, L., & Chung, C. (2017). Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions. Annual Review of Food Science and Technology, 8, 205–236.
168. McClements, D. J., Chung, C., & Wu, B. C. (2017). Structural design approaches for creating fat droplet and starch granule mimetics. Food & Function, 8(2), 498–510. https://doi.org/10.1039/c6fo00764c
169. McClements, D. J., Newman, E., & McClements, I. F. (2019). Plant-based milks: A review of the science underpinning their design, fabrication, and performance. Comprehensive Reviews in Food Science and Food Safety, 18(6), 2047–2067. https://doi.org/10.1111/1541-4337.12505
170. Menta, R., Rosso, G., & Canzoneri, F. (2022). Plant-based: A perspective on nutritional and technological issues. Are we ready for “precision processing”? Frontiers in Nutrition, 9, 878926. https://doi.org/10.3389/fnut.2022.878926
171. Merino, B., Fernández-Díaz, C. M., Cózar-Castellano, I., & Perdomo, G. (2020). Intestinal fructose and glucose metabolism in health and disease. Nutrients, 12(1), 94. https://doi.org/10.3390/nu12010094
172. Messina, M., Sievenpiper, J. L., Williamson, P., Kiel, J., & Erdman, J. W. (2022). Perspective: Soy-based meat and dairy alternatives, despite classification as ultra-processed foods, deliver high-quality nutrition on par with unprocessed or minimally processed animal-based counterparts. Advances in Nutrition, 13(3), 726–738. https://doi.org/10.1093/advances/nmac026
173. Monteiro, C. A., & Astrup, A. (2022). Does the concept of “ultra-processed foods” help inform dietary guidelines, beyond conventional classification systems? YES. The American Journal of Clinical Nutrition, 116(6), 1476–1481. https://doi.org/10.1093/ajcn/nqac122
174. Monteiro, C. A., Cannon, G., Lawrence, M., Louzada, M. L. C., & Machado, P. P. (2019a). Ultra-processed foods, diet quality, and health using the NOVA classification system. (p. 48). FAO.
175. Monteiro, C. A., Cannon, G., Levy, R. B., Moubarac, J.-C., Louzada, M. L. C., Rauber, F., Khandpur, N., Cediel, G., Neri, D., Martinez-Steele, E., Baraldi, L. G., & Jaime, P. C. (2019b). Ultra-processed foods: What they are and how to identify them. Public Health Nutrition, 22(5), 936–941. https://doi.org/10.1017/s1368980018003762
176. Monteiro, C. A., Cannon, G., Moubarac, J. C., Levy, R. B., Louzada, M. L. C., & Jaime, P. C. (2018). The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutrition, 21(1), 5–17. https://doi.org/10.1017/s1368980017000234
177. Mozaffarian, D. (2016). Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation, 133(2), 187–225. https://doi.org/10.1161/circulationaha.115.018585
178. Nepovinnykh, N. V., Kliukina, O. N., Ptichkina, N. M., & Bostan, A. (2019). Hydrogel based dessert of low calorie content. Food Hydrocolloids, 86, 184–192. https://doi.org/10.1016/j.foodhyd.2018.03.036
179. Nestel, P. J., & Mori, T. A. (2022). Dietary patterns, dietary nutrients and cardiovascular disease. Reviews in Cardiovascular Medicine, 23(1), 17. https://doi.org/10.31083/j.rcm2301017
180. Neumann, N. J., & Fasshauer, M. (2022). Added flavors: Potential contributors to body weight gain and obesity? BMC Medicine, 20(1), 417. https://doi.org/10.1186/s12916-022-02619-3
181. Ni, D. D., Gunness, P., Smyth, H. E., & Gidley, M. J. (2021). Exploring relationships between satiation, perceived satiety and plant-based snack food features. International Journal of Food Science and Technology, 56(10), 5340–5351. https://doi.org/10.1111/ijfs.15102
182. Nikmaram, N., & Rosentrater, K. A. (2019). Overview of some recent advances in improving water and energy efficiencies in food processing factories. Frontiers in Nutrition, 6, 20. https://doi.org/10.3389/fnut.2019.00020
183. Norton, J. E., Wallis, G. A., Spyropoulos, F., Lillford, P. J., & Norton, I. T. (2014). Designing food structures for nutrition and health benefits. Annual Review of Food Science and Technology, 5, 177–195.
184. Novakovic, S., Djekic, I., Klaus, A., Vunduk, J., Đorđević, V., Tomovic, V., Koćić-Tanackov, S., Lorenzo, J. M., Barba, F. J., & Tomasevic, I. (2020). Application of porcini mushroom (Boletus edulis) to improve the quality of frankfurters. Journal of Food Processing and Preservation, 44(8), e14556. https://doi.org/10.1111/jfpp.14556
185. O'Shea, N., Arendt, E. K., & Gallagher, E. (2012). Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innovative Food Science & Emerging Technologies, 16, 1–10. https://doi.org/10.1016/j.ifset.2012.06.002
186. Öztürk, B. (2017). Nanoemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability. European Journal of Lipid Science and Technology, 119(7), 1500539. https://doi.org/10.1002/ejlt.201500539
187. Pacheco, L. V., Parada, J., Pérez-Correa, J. R., Mariotti-Celis, M. S., Erpel, F., Zambrano, A., & Palacios, M. (2020). Bioactive polyphenols from Southern Chile seaweed as inhibitors of enzymes for starch digestion. Marine Drugs, 18(7), 353. https://doi.org/10.3390/md18070353
188. Park, J. H., Moon, J. H., Kim, H. J., Kong, M. H., & Oh, Y. H. (2020). Sedentary lifestyle: Overview of updated evidence of potential health risks. Korean Journal of Family Medicine, 41(6), 365–373. https://doi.org/10.4082/kjfm.20.0165
189. Parthasarathi, S., Muthukumar, S. P., & Anandharamakrishnan, C. (2016). The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions. Food & Function, 7(5), 2294–2302. https://doi.org/10.1039/c5fo01517k
190. Patel, A. R., Nicholson, R. A., & Marangoni, A. G. (2020). Applications of fat mimetics for the replacement of saturated and hydrogenated fat in food products. Current Opinion in Food Science, 33, 61–68. https://doi.org/10.1016/j.cofs.2019.12.008
191. Peng, X. Y., & Yao, Y. (2017). Carbohydrates as fat replacers. Annual Review of Food Science and Technology, 8, 331–351.
192. Perez-Moral, N., Saha, S., Pinto, A. M., Bajka, B. H., & Edwards, C. H. (2023). In vitro protein bioaccessibility and human serum amino acid responses to white bread enriched with intact plant cells. Food Chemistry, 404, 134538. https://doi.org/10.1016/j.foodchem.2022.134538
193. Petridi E, Karatzi K, Magriplis E, Charidemou E, Philippou E, Zampelas A. The impact of ultra-processed foods on obesity and cardiometabolic comorbidities in children and adolescents: a systematic review. Nutr Rev. 2024 Jun 10;82(7):913-928. https://doi.org/10.1093/nutrit/nuad095
194. Pires, R. K., Griep, R. H., Scaranni, P. d. O. d. S., Moreno, A. B., Molina, M. d. C. B., Luft, V. C., da Fonseca, M. d. J. M., & Cardoso, L. d. O. (2024). Stress and the Consumption of Ultra-Processed Foods during COVID-19’s Social Distancing: Are Mental Disorders Mediators in This Association? ELSA-Brasil Results. Nutrients, 16(13), 2097. https://doi.org/10.3390/nu1613209
195. Rackerby, B., Kim, H. J., Dallas, D. C., & Park, S. H. (2020). Understanding the effects of dietary components on the gut microbiome and human health. Food Science and Biotechnology, 29(11), 1463–1474. https://doi.org/10.1007/s10068-020-00811-w
196. Rastall, R. A., Diez-Municio, M., Forssten, S. D., Hamaker, B., Meynier, A., Moreno, F. J., Respondek, F., Stahl, B., Venema, K., & Wiese, M. (2022). Structure and function of non-digestible carbohydrates in the gut microbiome. Beneficial Microbes, 13(2), 95–168. https://doi.org/10.3920/bm2021.0090
197. Remnant, J., & Adams, J. (2015). The nutritional content and cost of supermarket ready-meals. Cross-sectional analysis. Appetite, 92, 36–42. https://doi.org/10.1016/j.appet.2015.04.069
198. Ren, Y., Linter, B. R., & Foster, T. J. (2020). Starch replacement in gluten free bread by cellulose and fibrillated cellulose. Food Hydrocolloids, 107, 105957. https://doi.org/10.1016/j.foodhyd.2020.105957
199. Ren, Y., Yakubov, G. E., Linter, B. R., & Foster, T. J. (2021). Development of a separated-dough method and flour/starch replacement in gluten free crackers by cellulose and fibrillated cellulose. Food & Function, 12(18), 8425–8439. https://doi.org/10.1039/d1fo01368h
200. Robinson, E., Khuttan, M., McFarland-Lesser, I., Patel, Z., & Jones, A. (2022). Calorie reformulation: A systematic review and meta-analysis examining the effect of manipulating food energy density on daily energy intake. International Journal of Behavioral Nutrition and Physical Activity, 19(1), 48. https://doi.org/10.1186/s12966-022-01287-z
201. Rojas-Bonzi, P., Vangsoe, C. T., Nielsen, K. L., Lærke, H. N., Hedemann, M. S., & Knudsen, K. E. B. (2020). The relationship between in vitro and in vivo starch digestion kinetics of breads varying in dietary fibre. Foods, 9(9), 1337. https://doi.org/10.3390/foods9091337
202. Rojas-Martin, L., Quintana, S. E., & García-Zapateiro, L. A. (2023). Physicochemical, rheological, and microstructural properties of low-fat mayonnaise manufactured with hydrocolloids from Dioscorea rotundata as a fat substitute. Processes, 11(2), 492. https://doi.org/10.3390/pr11020492
203. Rousta, L. K., Bodbodak, S., Nejatian, M., Yazdi, A. P. G., Rafiee, Z., Xiao, J. B., & Jafari, S. M. (2021). Use of encapsulation technology to enrich and fortify bakery, pasta, and cereal-based products. Trends in Food Science & Technology, 118, 688–710. https://doi.org/10.1016/j.tifs.2021.10.029
204. Ruxton, C. H. S., & Myers, M. (2021). Fruit juices: Are they helpful or harmful? An evidence review. Nutrients, 13(6), 1815. https://doi.org/10.3390/nu13061815
205. Sa, A. G. A., Moreno, Y. M. F., & Carciofi, B. A. M. (2020). Food processing for the improvement of plant proteins digestibility. Critical Reviews in Food Science and Nutrition, 60(20), 3367–3386. https://doi.org/10.1080/10408398.2019.1688249
206. Sadrabad, E. K., Hashemi, S. A., Nadjarzadeh, A., Askari, E., Mohajeri, F. A., & Ramroudi, F. (2023). Bisphenol A release from food and beverage containers—A review. Food Science & Nutrition, 11(7), 3718–3728. https://doi.org/10.1002/fsn3.3398
207. Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512–531. https://doi.org/10.1111/1541-4337.12330
208. Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: A critical review. Journal of Food Science and Technology-Mysore, 47(6), 587–597. https://doi.org/10.1007/s13197-010-0162-6
209. Sambu, S., Hemaram, U., Murugan, R., & Alsofi, A. A. (2022). Toxicological and teratogenic effect of various food additives: An updated review. BioMed Research International, 2022, https://doi.org/10.1155/2022/6829409
210. Samtiya, M., Aluko, R. E., Dhewa, T., & Moreno-Rojas, J. M. (2021). Potential health benefits of plant food-derived bioactive components: An overview. Foods, 10(4), 839. https://doi.org/10.3390/foods10040839
211. Santos, S., Vinderola, G., Santos, L., & Araujo, E. (2018). Bioavailability of chelated and non-chelated minerals: A systematic review. Revista Chilena De Nutricion, 45(4), 381–392. https://doi.org/10.4067/s0717-75182018000500381
212. Sarmiento-Santos, J., Souza, M. B. N., Araujo, L. S., Pion, J. M. V., Carvalho, R. A., & Vanin, F. M. (2022). Consumers' understanding of ultra-processed foods. Foods, 11(9), 1359. https://doi.org/10.3390/foods11091359
213. Sbardelotto, P. R. R., Balbinot-Alfaro, E., da Rocha, M., & Alfaro, A. T. (2022). Natural alternatives for processed meat: Legislation, markets, consumers, opportunities and challenges. Critical Reviews in Food Science and Nutrition, 63(30), 10303–10318. https://doi.org/10.1080/10408398.2022.2081664
214. Schwingshackl, L., Zähringer, J., Beyerbach, J., Werner, S. W., Heseker, H., Koletzko, B., & Meerpohl, J. J. (2021). Total dietary fat intake, fat quality, and health outcomes: A scoping review of systematic reviews of prospective studies. Annals of Nutrition and Metabolism, 77(1), 4–15. https://doi.org/10.1159/000515058
215. Scrinis, G., & Monteiro, C. A. (2018). Ultra-processed foods and the limits of product reformulation. Public Health Nutrition, 21(1), 247–252. https://doi.org/10.1017/s1368980017001392
216. Shaikh, S., Yaqoob, M., & Aggarwal, P. (2021). An overview of biodegradable packaging in food industry. Current Research in Food Science, 4, 503–520. https://doi.org/10.1016/j.crfs.2021.07.005
217. Shamim, K., Khan, S. A., & Ahmad, S. (2022). Consumers' understanding of nutrition labels for ultra-processed food products. Journal of Public Affairs, 22(1), e2398. https://doi.org/10.1002/pa.2398
218. Sharma, P., Gaur, V. K., Gupta, S., Varjani, S., Pandey, A., Gnansounou, E., You, S., Ngo, H. H., & Wong, J. W. C. (2022). Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Science of The Total Environment, 811, 152357. https://doi.org/10.1016/j.scitotenv.2021.152357
219. Shim, J. S., Shim, S. Y., Cha, H. J., Kim, J., & Kim, H. C. (2021). Socioeconomic characteristics and trends in the consumption of ultra-processed foods in Korea from 2010 to 2018. Nutrients, 13(4), 1120. https://doi.org/10.3390/nu13041120
220. Shu, L., Dhital, S., Junejo, S. A., Ding, L., Huang, Q., Fu, X., He, X., & Zhang, B. (2022). Starch retrogradation in potato cells: Structure and in vitro digestion paradigm. Carbohydrate Polymers, 286, 119261. https://doi.org/10.1016/j.carbpol.2022.119261
221. Silva, P. M., Cerqueira, M. A., Martins, A. J., Fasolin, L. H., Cunha, R. L., & Vicente, A. A. (2022). Oleogels and bigels as alternatives to saturated fats: A review on their application by the food industry. Journal of the American Oil Chemists Society, 99(11), 911–923. https://doi.org/10.1002/aocs.12637
222. Simoes, B. D. S., Barreto, S. M., Molina, M. D. C. B., Luft, V. C., Duncan, B. B., Schmidt, M. I., Benseñor, I. J. M., Cardoso, L. D. O., Levy, R. B., & Giatti, L. (2018). Consumption of ultra-processed foods and socioeconomic position: A cross-sectional analysis of the Brazilian Longitudinal Study of Adult Health. Cadernos De Saude Publica, 34(3), e00019717. https://doi.org/10.1590/0102-311x00019717
223. Singh, T., Pandey, V. K., Dash, K. K., Zanwar, S., & Singh, R. (2023). Natural bio-colorant and pigments: Sources and applications in food processing. Journal of Agriculture and Food Research, 12, 100628. https://doi.org/10.1016/j.jafr.2023.100628
224. Sirini, N., Roldán, A., Lucas-González, R., Fernández-López, J., Viuda-Martos, M., Pérez-Álvarez, J. A., Frizzo, L. S., & Rosmini, M. R. (2020). Effect of chestnut flour and probiotic microorganism on the functionality of dry-cured meat sausages. LWT, 134, 110197. https://doi.org/10.1016/j.lwt.2020.110197
225. Sloan, K. J., & McRorie, J. W. (2022). Dietary Fiber: All Fibers Are Not Alike. In: T. Wilson, N. J. Temple, & G. A. Bray, (eds) Nutrition Guide for Physicians and Related Healthcare Professions. Nutrition and Health. Humana, Cham, Totowa, NJ. https://doi.org/10.1007/978-3-030-82515-7_33
226. Snelson, M., & Coughlan, M. T. (2019). Dietary advanced glycation end products: Digestion, metabolism and modulation of gut microbial ecology. Nutrients, 11(2), 215. https://doi.org/10.3390/nu11020215
227. Song, Z. Y., Song, R. Y., Liu, Y. A., Wu, Z. F., & Zhang, X. (2023). Effects of ultra-processed foods on the microbiota-gut-brain axis: The bread-and-butter issue. Food Research International, 167, 112730. https://doi.org/10.1016/j.foodres.2023.112730
228. Srour, B., Kordahi, M. C., Bonazzi, E., Deschasaux-Tanguy, M., Touvier, M., & Chassaing, B. (2022). Ultra-processed foods and human health: From epidemiological evidence to mechanistic insights. Lancet Gastroenterology & Hepatology, 7(12), 1128–1140. https://doi.org/10.1016/s2468-1253(22)00169-8
229. Steele, E. M., Popkin, B. M., Swinburn, B., & Monteiro, C. A. (2017). The share of ultra-processed foods and the overall nutritional quality of diets in the US: Evidence from a nationally representative cross-sectional study. Population Health Metrics, 15, 1–11. https://doi.org/10.1186/s12963-017-0119-3
230. Suez, J., Cohen, Y., Valdés-Mas, R., Mor, U., Dori-Bachash, M., Federici, S., Zmora, N., Leshem, A., Heinemann, M., Linevsky, R., Zur, M., Ben-Zeev Brik, R., Bukimer, A., Eliyahu-Miller, S., Metz, A., Fischbein, R., Sharov, O., Malitsky, S., … Elinav, E. (2022). Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell, 185(18), 3307–3328. https://doi.org/10.1016/j.cell.2022.07.016
231. Sun, L. J., & Miao, M. (2020). Dietary polyphenols modulate starch digestion and glycaemic level: A review. Critical Reviews in Food Science and Nutrition, 60(4), 541–555. https://doi.org/10.1080/10408398.2018.1544883
232. Sun, L. J., Wang, Y. Y., & Miao, M. (2020). Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention. Trends in Food Science & Technology, 104, 190–207. https://doi.org/10.1016/j.tifs.2020.08.003
233. Svisco, E., Shanks, C. B., Ahmed, S., & Bark, K. (2019). Variation of adolescent snack food choices and preferences along a continuum of processing levels: The case of apples. Foods, 8(2), 50. https://doi.org/10.3390/foods8020050
234. Sweet, R., Kroon, P. A., & Webber, M. A. (2022). Activity of antibacterial phytochemicals and their potential use as natural food preservatives. Critical Reviews in Food Science and Nutrition, 64, 2076–2087. https://doi.org/10.1080/10408398.2022.2121255
235. Tack, J., Verbeure, W., Mori, H., Schol, J., Van Den Houte, K., Huang, I.-H., Balsiger, L., Broeders, B., Colomier, E., Scarpellini, E., & Carbone, F. (2021). The gastrointestinal tract in hunger and satiety signalling. United European Gastroenterology Journal, 9(6), 727–734. https://doi.org/10.1002/ueg2.12097
236. Tagliasco, M., Tecuanhuey, M., Reynard, R., Zuliani, R., Pellegrini, N., & Capuano, E. (2022). Monitoring the effect of cell wall integrity in modulating the starch digestibility of durum wheat during different steps of bread making. Food Chemistry, 396, 133678. https://doi.org/10.1016/j.foodchem.2022.133678
237. Tan, C., & McClements, D. J. (2021). Application of advanced emulsion technology in the food industry: A review and critical evaluation. Foods, 10(4), 812. https://doi.org/10.3390/foods10040812
238. Teo, P. S., Lim, A. J., Goh, A. T., Janani, R., Choy, J. Y. M., McCrickerd, K., & Forde, C. G. (2022). Texture-based differences in eating rate influence energy intake for minimally processed and ultra-processed meals. American Journal of Clinical Nutrition, 116(1), 244–254. https://doi.org/10.1093/ajcn/nqac068
239. Tucker, A. C., Martinez-Steele, E., Leung, C. W., & Wolfson, J. A. (2023). Associations between household frequency of cooking dinner and ultraprocessed food consumption and dietary quality among US children and adolescents. Childhood Obesity, 20(1), 11–22. https://doi.org/10.1089/chi.2022.0200
240. Tumu, K., Vorst, K., & Curtzwiler, G. (2023). Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Comprehensive Reviews in Food Science and Food Safety, 22(2), 1337–1359. https://doi.org/10.1111/1541-4337.13113
241. Valdivieso-Ugarte, M., Gomez-Llorente, C., Plaza-Díaz, J., & Gil, A. (2019). Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review. Nutrients, 11(11), 2786. https://doi.org/10.3390/nu11112786
242. Venegas, C., Farfan-Beltrán, N., Bucchi, C., Martínez-Gomis, J., & Fuentes, R. (2022). Effect of chewing behavior modification on food intake, appetite and satiety-related hormones: A systematic review. Revista Chilena De Nutricion, 49(6), 760–774. https://doi.org/10.4067/s0717-75182022000700760
243. Vinoy, S., Meynier, A., Goux, A., Jourdan-Salloum, N., Normand, S., Rabasa-Lhoret, R., Brack, O., Nazare, J.-A., Péronnet, F., & Laville, M. (2017). The effect of a breakfast rich in slowly digestible starch on glucose metabolism: A statistical meta-analysis of randomized controlled trials. Nutrients, 9(4), 318. https://doi.org/10.3390/nu9040318
244. Wallace, M., O'Hara, H., Watson, S., Goh, A., Forde, C. G., McKenna, G., & Woodside, J. V. (2023). Combined effect of eating speed instructions and food texture modification on eating rate, appetite and later food intake. Appetite, 184, 106505. https://doi.org/10.1016/j.appet.2023.106505
245. Wang, J. K., Han, L. X., Wang, D. Y., Sun, Y. J., Huang, J. R., & Shahidi, E. (2021). Stability and stabilization of omega-3 oils: A review. Trends in Food Science & Technology, 118, 17–35. https://doi.org/10.1016/j.tifs.2021.09.018
246. Wang, J. S., Liu, C., Zheng, X. L., Hong, J., Sun, B. H., & Liu, M. (2023). The structural integrity of endosperm/cotyledon cells and cell modification affect starch digestion properties. Food & Function, 14(15), 6784–6801. https://doi.org/10.1039/d3fo00856h
247. Wei, Q. Y., Liu, T., & Sun, D. W. (2018). Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends in Food Science & Technology, 82, 32–45. https://doi.org/10.1016/j.tifs.2018.09.020
248. Whitney, K., & Simsek, S. (2017). Reduced gelatinization, hydrolysis, and digestibility in whole wheat bread in comparison to white bread. Cereal Chemistry, 94(6), 991–1000. https://doi.org/10.1094/cchem-05-17-0116-r
249. Wink, M. (2022). Current understanding of modes of action of multicomponent bioactive phytochemicals: Potential for nutraceuticals and antimicrobials. Annual Review of Food Science and Technology, 13(1), 337–359. https://doi.org/10.1146/annurev-food-052720-100326
250. Wolfson, J. A., Leung, C. W., & Richardson, C. R. (2020). More frequent cooking at home is associated with higher Healthy Eating Index-2015 score. Public Health Nutrition, 23(13), 2384–2394. https://doi.org/10.1017/s1368980019003549
251. Wu, L., Zhang, C. H., Long, Y. X., Chen, Q., Zhang, W. M., & Liu, G. Z. (2022). Food additives: From functions to analytical methods. Critical Reviews in Food Science and Nutrition, 62(30), 8497–8517. https://doi.org/10.1080/10408398.2021.1929823
252. Wu, Q. L., Chen, T. T., El-Nezami, H., & Savidge, T. C. (2020). Food ingredients in human health: Ecological and metabolic perspectives implicating gut microbiota function. Trends in Food Science & Technology, 100, 103–117. https://doi.org/10.1016/j.tifs.2020.04.007
253. Xiong, W. Y., Devkota, L., Zhang, B., Muir, J., & Dhital, S. (2022). Intact cells: “Nutritional capsules” in plant foods. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1198–1217. https://doi.org/10.1111/1541-4337.12904
254. Yang, H. J., Khan, M. A., Han, M. Y., Yu, X. B., Bai, X. J., Xu, X. L., & Zhou, G. H. (2016). Optimization of textural properties of reduced-fat and reduced-salt emulsion-type sausages treated with high pressure using a response surface methodology. Innovative Food Science & Emerging Technologies, 33, 162–169. https://doi.org/10.1016/j.ifset.2015.10.007
255. Yao, M. F., Xie, J. J., Du, H. J., McClements, D. J., Xiao, H., & Li, L. J. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857–874. https://doi.org/10.1111/1541-4337.12532
256. Yin, Y., Gu, Q. Z., Liu, X. B., Liu, F. G., & McClements, D. J. (2023). Double network hydrogels: Design, fabrication, and application in biomedicines and foods. Advances in Colloid and Interface Science, 320, 102999. https://doi.org/10.1016/j.cis.2023.102999
257. Zang, E., Jiang, L., Cui, H., Li, X., Yan, Y., Liu, Q., Chen, Z., & Li, M. (2023). Only plant-based food additives: An overview on application, safety, and key challenges in the food industry. Food Reviews International, 39(8), 5132–5163. https://doi.org/10.1080/87559129.2022.2062764
258. Zapata, M. E., Rovirosa, A., & Carmuega, E. (2022). Intake of energy and critical nutrients according to the NOVA classification in Argentina, time trend and differences according to income. Cadernos De Saude Publica, 38(5), e00252021. https://doi.org/10.1590/0102-311xes252021
259. Zhang, G., Zhang, L., Ahmad, I., Zhang, J., Zhang, A., Tang, W., Ding, Y., & Lyu, F. (2022). Recent advance in technological innovations of sugar-reduced products. Critical Reviews in Food Science and Nutrition, 1–15. https://doi.org/10.1080/10408398.2022.2151560
260. Zhang, R., Noronha, J. C., Khan, T. A., Mcglynn, N., Back, S., Grant, S. M., Kendall, C. W. C., & Sievenpiper, J. L. (2023). The effect of non-nutritive sweetened beverages on postprandial glycemic and endocrine responses: A systematic review and network meta-analysis. Nutrients, 15(4), 1050. https://doi.org/10.3390/nu15041050
261. Zhang, Y., & Giovannucci, E. L. (2022). Ultra-processed foods and health: A comprehensive review. Critical Reviews in Food Science and Nutrition, 63, 10836–10848. https://doi.org/10.1080/10408398.2022.2084359
262. Zhu, F. M., Du, B., & Xu, B. J. (2018). Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Critical Reviews in Food Science and Nutrition, 58(8), 1260–1270. https://doi.org/10.1080/10408398.2016.1251390
Дополнительные файлы
Рецензия
Для цитирования:
Бурак Л. Ультрапереработанные продукты питания: методы снижения их калорийности и повышения пищевой ценности (Обзор предметного поля). Health, Food & Biotechnology. 2025;7(2). https://doi.org/10.36107/hfb.2025.i2.s258