The Role of Food in Enhancing Individual Detoxification Potential
https://doi.org/10.36107//hfb.2025.i3.s267
Abstract
Introduction. In the current reality, where the negative impact of the environment on human health has increased significantly, the issue of supporting individual detoxification potential among workers in hazardous conditions is becoming increasingly important. In environments with exposure to harmful chemical factors, the technogenic load on the detoxification system of workers increases, leading to a higher risk of occupational diseases. Nutrition serves as one of the main tools for supporting xenobiotic metabolism.
The purpose of the review article is to systematize the scientific literature on the interplay between diet, genetic predisposition and detoxification potential.
Materials and Methods. Based on an analysis of literature sources, the mechanisms of two-phase metabolic detoxification are examined, along with the influence of genetic polymorphisms on the activity of enzymes involved in these phases.
Results. An original definition of the concept of "individual detoxification potential" is proposed. The role of key detoxifying enzymes such as cytochrome P450s, glutathione-S-transferases, and N-acetyltransferases in toxin metabolism is described. It is shown that polymorphisms in genes encoding these enzymes can lead to reduced efficiency of detoxification processes in the body, increasing the risk of toxic substance accumulation. Special attention is paid to a personalized approach to nutrition aimed at improving detoxification processes in individuals working under hazardous conditions. Examples of phytochemical substances found in plant-based products that can stimulate or suppress the activity of these enzymes are presented. The prospects of using personalized diets to optimize the detoxification function of the organism are discussed.
Conclusions. The review results indicate the necessity of considering genetic characteristics when developing nutritional programs for people exposed to elevated toxic loads. To reduce toxic burden, it seems reasonable to include foods that enhance individual detoxification potential in dietary regimens.
About the Authors
Tatyana V. SpitsinaRussian Federation
Graduate student
Igor A. Nikitin
Russian Federation
Doctor of Engineering
References
1. Aga, S. S., Banday, M. Z., Nissar, S. (Eds.). (2022). Genetic Polymorphism and Disease (1st ed.). CRC Press. 562, 9781003246244. https://doi.org/10.1201/9781003246244
2. Agundez, J. (2008). Polymorphisms of Human N-Acetyltransferases and Cancer Risk. Current Drug Metabolism, 9(6), 520–531. https://doi.org/10.2174/1389200087848920
3. Almazroo, O. A., Miah, M. K., Venkataramanan, R. (2017). Drug Metabolism in the Liver. Clinics in liver disease, 21(1), 1–20. https://doi.org/10.1016/j.cld.2016.08.001
4. Alnasser, S.M. (2025). The role of glutathione S-transferases in human disease pathogenesis and their current inhibitors. Genes & Diseases, 12, 101482, https://doi.org/10.1016/j.gendis.2024.101482.
5. Amromina, A. M., Sitnikov, I. A., Shaikhova, D.R. (2021). The relationship of polymorphic variants of genes GSTM1, GSTT1, GSTP with the risk of developing diseases (literature review). Gigiena i Sanitariya (Hygiene and Sanitation, Russian journal). 100(12), 1385-1390. https://doi.org/10.47470/0016-9900-2021-100-12-1385-1390 (In Russ.)
6. Baturin, A. K., Sorokina, E.Yu., Pogozheva, A.V., Tutelyan, V.A (2012). Genetic approaches to nutrition personalization. Problems of nutrition, 81(6), 4-11 (In Russ.)
7. Bonetti, G., Medori, M. C., Dhuli, K., Macchia, A., Donato, K., Cristoni, S., Miertus, S., Miertus, J., Veselenyiova, D., Iaconelli, A., Aquilanti, B., Matera, G., Connelly, S. T., Bertelli, M. (2023). Nutrigenomics: SNPs correlated to detoxification, antioxidant capacity and longevity. La Clinica terapeutica, 174(2(6)), 209–213. https://doi.org/10.7417/CT.2023.2489
8. Bordoni, L., Gabbianelli, R. (2019). Primers on nutrigenetics and nutri(epi)genomics: origins and development of precision nutrition. Biochimie, 160, 156–171. https://doi.org/10.1016/j.biochi.2019.03.006
9. Chen, C. (2024). Phase II Detoxification Enzymes. In: Activation and Detoxification Enzymes, 59-70. Springer, Cham. https://doi.org/10.1007/978-3-031-55287-8_6
10. Chiarella, P., Capone, P., Sisto, R. (2023). Contribution of Genetic Polymorphisms in Human Health. International Journal of Environmental Research and Public Health, 20(2), 912. https://doi.org/10.3390/ijerph20020912
11. Clifford, T., Howatson, G., West, D., Stevenson, E. (2015). The Potential Benefits of Red Beetroot Supplementation in Health and Disease. Nutrients, 7(4), 2801–2822. https://doi.org/10.3390/nu7042801
12. Dasari, S., Gonuguntla, S., Ganjayi, M. S., Bukke, S., Sreenivasulu, B., & Meriga, B. (2018). Genetic polymorphism of glutathione S-transferases: Relevance to neurological disorders. Pathophysiology, 25(4), 285-292. Elsevier. https://doi.org/10.1016/j.pathophys.2018.06.001
13. Deng, J., Ling, Z., Ni-Ya, Z., Karrow, N. A., Christopher, S. K., De-Sheng, Q., Lv-Hui, S. (2018). Aflatoxin B1 metabolism: regulation by phase I and II metabolizing enzymes and chemoprotective agents. Mutation Research/Reviews in Mutation Research, 778, 79–89. https://doi.org/10.1016/j.mrrev.2018.10.002
14. Drоzdova E.V., Kolesneva Е.V., Syakhovich V.E., Dalhina N.А. Polymorphisms of xenobiotic metabolism enzyme genes CYP2E1, GSTM1, GSTT1, EPHX1 as biomarkers of sensitivity to exposure to water disinfection byproducts (using chloroform as an example). Health Risk Analysis, 2023, 1, 157-170. https://doi.org/10.21668/health.risk/2023.1.15 (In Russ.)
15. Efimova N.V., Kuzmina M.V., Bobkova E.V. Assessment of the annual trend of chemical aerogenic risk to health and mortality of the population at an industrial center. Hygiene and Sanitation. 2023, 102(12), 1375-1380. (In Russ.) https://doi.org/10.47470/0016-9900-2023-102-12-1375-1380 (In Russ.)
16. Elfaki, I., Mir, R., Almutairi, F. M., Duhier, F. M. A. (2018). Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pacific journal of cancer prevention: APJCP, 19(8), 2057–2070. https://doi.org/10.22034/APJCP.2018.19.8.2057
17. Elkashty, O. A., Tran, S. D. (2021). Sulforaphane as a Promising Natural Molecule for Cancer Prevention and Treatment. Current Medical Science, 41(2), 250–269. https://doi.org/10.1007/s11596-021-2341-2
18. Esteves, F., Rueff, J., Kranendonk, M. (2021). The Central Role of Cytochrome P450 in Xenobiotic Metabolism – A Brief Review on a Fascinating Enzyme Family. Journal of xenobiotics, 11(3), 94–114. https://doi.org/10.3390/jox11030007
19. Farhan, M. (2022). Green Tea Catechins: Nature's Way of Preventing and Treating Cancer. International journal of molecular sciences, 23(18),10713. https:// doi.org/10.3390/ijms231810713
20. Galton, D. (2014). Archibald E. Garrod: The founding father of biochemical genetics. Pioneers of Medicine Without a Nobel Prize, 1-21. https://doi.org/10.1142/9781783263851_0001
21. Hoffman, J. B., Hennig, B. (2017). Protective influence of healthful nutrition on mechanisms of environmental pollutant toxicity and disease risks. Annals of the New York Academy of Sciences, 1398(1), 99–107. https://doi.org/10.1111/nyas.13365
22. Hossam Abdelmonem, B., Abdelaal, N. M., Anwer, E. K. E., Rashwan, A. A., Hussein, M. A., Ahmed, Y. F., Khashana, R., Hanna, M. M., & Abdelnaser, A. (2024). Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines, 12(7), 1467. https://doi.org/10.3390/biomedicines12071467
23. Ibraeva L. K. (2014). The influence of environmental environmental factors on the development of diseases in the population (literature review). Occupational Medicine and Industrial Ecology, 8, 38-43 (In Russ.)
24. Ivanova, V. N., Nikitin, I. A., Portnov, N. M., Zhuchenko, N. A., Shterman, S. V., Sidorenko, M. Yu. (2018). Designing personalized diets using functional food products. Food industry, 11, 10-16 (In Russ.)
25. Jacobs, D. R., Gross, M. D., Tapsell, L. C. (2009). Food synergy: An operational concept for understanding nutrition. The American Journal of Clinical Nutrition, 89(5), 1543S-1548S. https://doi.org/10.3945/ajcn.2009.26736B
26. James, M. O. (2022). 1.21 – Drug Metabolism: Phase II Enzymes. Comprehensive Pharmacology, 1, 563–584. Elsevier. https://doi.org/10.1016/B978-0-12-820472-6.00123-7
27. Kakkoura, M. G., Loizidou, M. A., Demetriou, C. A., Loucaides, G., Daniel, M., Kyriacou, K., Hadjisavvas, A. (2017). The synergistic effect between the Mediterranean diet and GSTP1 or NAT2 SNPs decreases breast cancer risk in Greek-Cypriot women. European journal of nutrition, 56(2), 545–555. https://doi.org/10.1007/s00394-015-1099-3
28. Karimov, H. Ya., Assesorova, Y. Y. (2020). The role of polymorphic genes GSTM and GSTT in oncogenesis and the occurrence of hematological neoplasms. Issues of Oncology, 66 (5), 472-478. https://doi.org/10.37469/0507-3758-2020-66-5-472-478 (In Russ.)
29. Kiani, A. K., Bonetti, G., Donato, K., Kaftalli, J., Herbst, K. L., Stuppia, L., Fioretti, F., Nodari, S., Perrone, M., Chiurazzi, P., Bellinato, F., Gisondi, P., Bertelli, M. (2022). Polymorphisms, diet and nutrigenomics. Journal of preventive medicine and hygiene, 63(2), 125–141. https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2754
30. Kim, J. W., Kim, J. H., Kim, C. Y., Jeong, J. S., Lim, J. O., Kim, J. C., Ko, J. W., Kim, T. W. (2022). Diallyl disulfide prevents 1,3-dichloro-2-propanol-induced hepatotoxicity through mitogen-activated protein kinases signaling. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 160, 112814. https://doi.org/10.1016/j.fct.2022.112814
31. Kochetkova, A. A., Vorobyova, V. M., Sarkisyan, V. A., Vorobyova, I. S., Smirnova, E. A., Shatnyuk, L. N. (2020). The dynamics of innovation in food production technology: from specialization to personalization. Nutrition Issues, 89 (4), 233-243. https://doi.org/10.24411/0042-8833-2020-10056 (In Russ.)
32. Kriit, V. E., Sladkova, Yu. N., Sannikov, M. V., Pyatibrat, A.O. (2020). Assessment of the concentration of dioxins in firefighters' blood lipids depending on polymorphic variants of xenobiotic detoxification genes. Public Health and Habitat, 10 (331), 65-74. https://doi.org/10.35627/2219-5238/2020-331-10-65-74 (In Russ.)
33. Kukongviriyapan, V., Phromsopha, N., Tassaneeyakul, W., Kukongviriyapan, U., Sripa, B., Hahnvajanawong, V., Bhudhisawasdi, V. (2006). Inhibitory effects of polyphenolic compounds on human arylamineN-acetyltransferase 1 and 2. Xenobiotica, 36(1), 15–28. doi:10.1080/00498250500489901
34. Laddu, D., Hauser, M. (2019). Addressing the Nutritional Phenotype Through Personalized Nutrition for Chronic Disease Prevention and Management. Progress in cardiovascular diseases, 62(1), 9–14. https://doi.org/10.1016/j.pcad.2018.12.004
35. Lipatov, G. Ya., Shmakova E. E., Adrianovsky V. I., Zlygosteva, N. V., Plotko, E. G. (2021). The working conditions of workers of the main professions in obtaining copper by pyrometallurgical and hydrometallurgical methods in Russia. Hygiene and Sanitation, 100 (12), 1443-1448. https://doi.org/10.47470/0016-9900-2021-100-12-1443-1448 (In Russ.)
36. Masuda, M., Watanabe, S., Tanaka, M., Tanaka, A, Araki, H. (2017). Screening of furanocoumarin derivatives as cytochrome P450 3A4 inhibitors in citrus. Journal of Clinical Pharmacy and Therapeutics, 43(1), 15–20. https://doi.org/10.1111/jcpt.12595
37. Mazhaeva, T. V., Dubenko, S. E., Chernova, Y. S., Nosova, I. A. (2022). Molecular and genetic aspects of health risk in relation to adverse environmental conditions and nutrition (systematic review). Health Risk Analysis, 4, 186-197 (In Russ.)
38. Mogilenkova, L. A., Rembovsky, V. R. (2016). The role of genetic polymorphism and differences in the detoxification of chemicals in the human body. Hygiene and Sanitation, 95 (3), 255-262. https://doi.org/10.18821/0016-9900-2016-95-3-255-262 (In Russ.)
39. Movergoz, S. V., Setko, N. P., Kalinina, E. Yu. (2022). Molecular and genetic aspects of the state of the detoxification system in operators and machinists, depending on the degree of harmfulness of industrial factors. Orenburg Medical Bulletin, 10 (2 (38)), 69-72 (In Russ.)
40. Padma, V. V., Kalai Selvi, P., Sravani, S. (2014). Protective effect of ellagic acid against TCDD-induced renal oxidative stress: Modulation of CYP1A1 activity and antioxidant defense mechanisms. Molecular Biology Reports, 41(7), 4223–4232. https://doi.org/10.1007/s11033-014-3292-5
41. Panda, C., Komarnytsky, S., Fleming, M. N., Marsh, C., Barron, K., Le Brun-Blashka, S., Metzger, B. (2023). Guided Metabolic Detoxification Program Supports Phase II Detoxification Enzymes and Antioxidant Balance in Healthy Participants. Nutrients, 15(9), 2209. https://doi.org/10.3390/nu15092209
42. Park, S. H., Choi, H. K., Park, J. H., Hwang, J. T. (2024). Current insights into genome-based personalized nutrition technology: a patent review. Frontiers in Nutrition, 11, 1346144. https://doi.org/10.3389/fnut.2024.1346144
43. Peretolchina, N. P., Malov, I. V., and Seminsky, I. J. (2021). The role of N-acetyltransferase 2 gene polymorphism in human pathology. Acta Biomedica Scientifica, 6 (5), 30-43. https://doi.org/10.29413/ABS.2021-6.5.4 (In Russ.)
44. Petryszyn, P., Zurakowski, G., Dudkowiak, R., Machowska, M., Gruca, A., Ekk‐Cierniakowski, P., Skretkowicz, J., Poniewierka, E., Wiela-Hojenska, A., Glowacka, K. (2025). The N‐Acetyltransferase 2 Polymorphism and Susceptibility to Inflammatory Bowel Disease: A Case–Control Study. Pharmacology Research & Perspectives, 13(1), e70040. https://doi.org/10.1002/prp2.70040
45. Prüss-Ustün, A., Wolf, J., Corvalán, C., Neville, T., Bos, R., Neira, M. (2017). Diseases due to unhealthy environments: an updated estimate of the global burden of disease attributable to environmental determinants of health. Journal of Public Health, 39(3), 464–475. https://doi.org/10.1093/pubmed/fdw085
46. Rendic, S.P., Guengerich F.P. (2021). Human Family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Archives of toxicology, 95(2), 395-472. https://doi/10.1007/s00204-020-02971-4
47. Saghir, S. A., Ansari, R. A., Munir, S. T. (2023). Fate of chemicals following exposure III: Metabolism (biotransformation). In P. Wexler (Ed.). Encyclopedia of Toxicology, Vol. 4, 635-668. Elsevier. https://doi.org/10.1016/B978-0-12-824315-2.00050-6
48. Saltykova, M. M. (2023). Problems of health risk assessment in case of chemical pollution of the environment, Medicine of extreme Situations, 2, 16-20. https://doi.org/10.47183/mes.2023.022 (In Russ.)
49. Satoh, T., Fujisawa, H., Nakamura, A., Takahashi, N., Watanabe, K. (2016). Inhibitory Effects of Eight Green Tea Catechins on Cytochrome P450 1A2, 2C9, 2D6, and 3A4 Activities. Journal of Pharmacy & Pharmaceutical Sciences, 19(2), 188. https://doi.org/10.18433/j3ms5c
50. Seki, H., Akiyoshi, T., Imaoka, A., Ohtani, H. (2019). Inhibitory kinetics of fruit components on CYP2C19 activity. Drug Metabolism and Pharmacokinetics, 34(3), 181–186. https://doi.org/10.1016/j.dmpk.2019.02.002
51. Shaikhova, D. R., Amromina, A.M., Bereza, I. A., Shastin, A. S., Gazimova, V. G., Sutunkova, M. P., Gurvich, V. B. (2022). The effect of the genetic polymorphism of the GSTM1, GSTT1, and GSTP1 genes on the metal content in the blood of smelters producing non-ferrous metals. Health Risk Analysis, 3, 176-181. https://doi.org/10.21668/health.risk/2022.3.17 (In Russ.)
52. Shumatova, T. A., Kovalenko, D. V. (2021). The role of genes of the second phase of xenobiotic detoxification in the pathogenesis of multifactorial diseases. Pacific Medical Journal, 4, 16-20. https://doi.org/10.34215/1609-1175-2021-4-16-20 (In Russ.)
53. Sikalidis, A. K. (2018). From Food for Survival to Food for Personalized Optimal Health: A Historical Perspective of How Food and Nutrition Gave Rise to Nutrigenomics. Journal of the American College of Nutrition, 38(1), 84–95. https://doi.org/10.1080/07315724.2018.1481797
54. Singar, S., Nagpal, R., Arjmandi, B. H., Akhavan, N. S. (2024). Personalized Nutrition: Tailoring Dietary Recommendations through Genetic Insights. Nutrients, 16(16), 2673. https://doi.org/10.3390/nu16162673
55. Thompson, H. J., Levitt, J. O., McGinley, J. N., Chandler, P., Guenther, P. M., Huybrechts, I., Playdon, M. C. (2021). Measuring dietary botanical diversity as a proxy for phytochemical exposure. Nutrients, 13(4). https://doi.org/10.3390/nu13041295
56. Thompson, H. J., Lutsiv, T., McGinley, J. N., Hussan, H., Playdon, M. C. (2023). Dietary Oncopharmacognosy as a Crosswalk between Precision Oncology and Precision Nutrition. Nutrients, 15(9), 2219. https://doi.org/10.3390/nu15092219
57. Veith, A., Moorthy, B. (2018). Role of cytochrome P450s in the generation and metabolism of reactive oxygen species. Current Opinion in Toxicology, 7, 44-51. https://doi.org/10.1016/j.cotox.2017.10.003)
58. Vineis, P., Robinson, О., Chadeau-Hyam, М., Abbas Dehghan, А., Mudway, I., Dagnino, S. (2020). What is new in the exposome? Environment International, 143, 1-13. https://doi.org/10.1016/j.envint.2020.105887
59. Xiao, Y. L., Gong, Y., Qi, Y. J., Shao, Z. M., Jiang, Y. Z. (2024). Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduction and Targeted Therapy, 9 (59). https://doi.org/10.1038/s41392-024-01771-x
60. Xu, H., Jia, Y., Sun, Z., Su, J., Liu, Q. S., Zhou, Q., Jiang, G. (2022). Environmental pollution, a hidden culprit for health issues. Eco-Environment and Health, 1(1), 31-45 https://doi.org/10.1016/j.eehl.2022.04.003
61. Yaqoob, A., Rehman, Q., Rehman, K., Akash, M. S. H., Hussain, I., Ahmad, R. (2022). Role of drug-metabolizing enzymes in biotransformation of drugs. In Biochemistry of Drug Metabolizing Enzymes: Trends and Challenges, 73–108. Elsevier. https://doi.org/10.1016/B978-0-323-95120-3.00013-0
62. Zarezadeh, M., Saedisomeolia, A., Shekarabi, M., Khorshidi, M., Emami, M. R., Müller, D. J. (2021). The effect of obesity, macronutrients, fasting and nutritional status on drug-metabolizing cytochrome P450s: a systematic review of current evidence on human studies. European Journal of Nutrition. 60(6), 2905-2921. https://doi.org/10.1007/s00394-020-02421-y
63. Zhao, M., Ma, J., Li, M., Zhang, Y., Jiang, B., Zhao, X., Huai, C., Shen, L., Zhang, N., He, L., Qin, S. (2021). Cytochrome P450 Enzymes and Drug Metabolism in Humans. International Journal of Molecular Sciences, 22(23), 12808. https://doi.org/10.3390/ijms222312808
64. Zhilinskaya, N. V. (2018). Personalization of nutrition is the main scenario for the development of the food industry. Nutrition Issues, 87(5), 211-211. https://doi.org/10.24411/0042-8833-2018-10320 (In Russ.)
Review
For citations:
Spitsina T.V., Nikitin I.A. The Role of Food in Enhancing Individual Detoxification Potential. Health, Food & Biotechnology. 2025;7(3). https://doi.org/10.36107//hfb.2025.i3.s267



















