Mutual Influence of Obstructive Sleep Apnea and Metabolic Syndrome
https://doi.org/10.36107/hfb.2019.il.s144
Abstract
The aim of this study was to find any cause-and-effect relationships between the development of obstructive sleep apnoea and the occurrence of metabolic changes affecting the progression of the disease. Russian and foreign articles on obstructive sleep apnoea and the complications of this disease were analysed. Special attention was paid to data on metabolic changes. Any cause-and-effect relationships for the progression of obstructive sleep apnoea and metabolic syndrome were established and subjected to logical analysis, which made it possible to conclude that these diseases are interrelated. Intermittent hypoxia and sleep fragmentation arising from obstructive sleep apnoea and metabolic syndrome lead to a decrease in insulin sensitivity, an increase in the activity of the sympathetic nervous system and systemic inflammation, all of which are important factors in the progression of the metabolic syndrome. In turn, metabolic syndrome is an independent risk factor for obstructive sleep apnoea, for example, un-correctable glycemia, desensitises carotid bodies and pharyngeal muscles, contributing to the occurrence of respiratory disorders in a dream, which suggests the emergence of a “vicious circle” in the pathogenesis of both diseases. Thus, we can talk about the bilateral effects of obstructive sleep apnoea and metabolic syndrome. A special therapy (a method of treatment by creating a constant positive pressure in the airways during a night’s sleep) for obstructive sleep apnoea has a positive effect on the degree of insulin resistance and the level of adipokines. This circumstance necessitates the timely initiation of therapy in patients with metabolic syndrome who have breathing disorders during sleep. The consulting physician, who is confronted with the problem of respiratory disorders during night sleep, needs to understand the true nature of the disease in a particular situation to form correct and precise recommendations to the patient; timely diagnose the complications of obstructive sleep apnoea syndrome and hence refer patients to the appropriate specialists. Complications of obstructive sleep apnoea are no less dangerous than the main clinical manifestations, which necessitates an integrated approach to a patient with obstructive sleep apnoea and metabolic syndrome. The interrelationship between obstructive sleep apnoea and metabolic syndrome as described by us will allow the practitioners to more clearly orient themselves in the variety of clinical manifestations of obstructive sleep apnoea and the selection of an effective treatment.
About the Authors
A. V. YashchenkoRussian Federation
Aleksey V. Yashchenko
11 Volokolamskoe highway, Moscow, 125080; 3, Novaya Ipatovka str., Moscow
A. V. Konkov
Russian Federation
Aleksandr V. Konkov
11 Volokolamskoe highway, Moscow, 125080
References
1. Zimin, Yu. V. & Buzunov, R. V. (1997). Cardiovascular disorders in the syndrome of obstructive sleep apnea: are they really an independent risk factor for the death of patients with this disease? Kardiologiya [Cardiology], 37(9), 85-97.
2. Markin, A. V., Martynenko, T. I., Kostyuchenko, G. I., Tseymakh, I. Ya., & Shoikhet, Ya. N. (2014). Risk factors for cardiovascular disease in patients with obstructive sleep apnea. Klinicist [Clinician],1, 1521. https://doi.org/10.17650/1818-8338-2014-1-15-21
3. Amara, A. W. & Maddox, M. H. Epidemiology of sleep medicine. In M. Kryger, T. Roth & W. C. Dement (Eds.), Principles and practice of sleep medicine (pp. 627-637). Elsevier.
4. Avogaro, A., Toffolo, G., Valerio, A., & Cobelli, C. (1996). Epinephrine exerts opposite effects on peripheral glucose disposal and glucose-stimulated insulin secretion: a stable label intravenous glucose tolerance test minimal model study. Diabetes, 45, 13731378. https://doi.org/10.2337/diab.45.10.1373
5. Yaschenko, A. V., & Konkov, A. V. (2019). Mutual Influence of Obstructive Sleep Apnea and Metabolic Syndrome. Health, Food & Biotechnology, 1(1), 14-26. https://doi.org/10.36107/hfb.2019.i1.s144
6. Barcelo, A., Barbe, F., de la Pena, M., Martinez, P., Soriano, J. B., Pierola J., & Agusti A. G. N. (2008). Insulin resistance and daytime sleepiness in patients with sleep aponoea. Thorax, 63(11), 946-50. http://dx.doi.org/10.1136/thx.2007.093740
7. Carniero, G., Togeiro, S. M., Ribeiro-Filho, F. F., Truk-sinas, E., Ribeiro, A. B., Zanella, M. T., & Tufik, S. (2009). Continuous positive airway pressure therapy improves hypoadiponectinemia in severe obese men with obstructive sleep apnea without changes in insulin resistance. Metabolic syndrome and related disorders, 7(6), 537-42. https://doi.org/10.1089/met.2009.0019
8. Cepeda, F. X., Toschi-Dias, E., Maki-Nunes, C., Rondon, M. U., Alves, M. J., Braga, A. M., Martinez, D. G., Drager, L. F., Lorenzi-Filho, G., Negrao, C. E., & Trombetta, I. C. (2015). Obstructive Sleep Apnea Impairs Post exercise Sympathovagal Balance in Patients with Metabolic Syndrome. Sleep, 38(7), 1059-1066. https://doi.org/10.5665/sleep.4812
9. Cepeda, F. X., Virmondes, L., Rodrigues, S., Dutra-Marques, A. C. B., Toschi-Dias, E., Ferreira-Camargo, F. C., Hussid, M. F., Rondon, M. U., Alves, M. J., & Trombetta, I. C. (2019). identifying the risk of obstructive sleep apnea in metabolic syndrome patients: Diagnostic accuracy of the Berlin Questionnaire. PLOS One, 44, 48-57. https://doi.org/10.1371/journal.pone.0217058
10. Dealberto, M-J. (1994). Factors related to sleep apnea syndrome in sleep clinic patients. Chest, 105, 17531758.
11. Deegan, P. C. & McNicholas W. T. (1994). Predictive value of clinical features for the obstructive sleep apnoea syndrome. European Respiratory Journal, 9, 117-124.
12. Eder, K., Baffy, N., Falus, A., & Fulop, A.K. (2009). The major inflammatory mediator interleukin-6 and obesity. Inflammation Research, 58(11), 727-36. https://doi.org/10.1007/s00011-009-0060-4
13. Elmasry, A., Lindberg, E., Berne, C., Janson, C., Gislason, T., Awad Tageldin, M., & Boman, G. (2001). Sleep-disordered breathing and glucose metabolism in hypertensive men: a population-based study. Journal of Internal Medicine, 249, 153-161. https://doi.org/10.1046/j.1365-2796.2001.00787.x
14. Erkert, D.J., White, D.P., Jordan, A.S., Malhotra, A., & Wellman, A. (2013). Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. American Journal of Respiratory and Critical Care Medicine, 188, 996-1004. https://doi.org/10.1164/rccm.201303-0448OC
15. Gaines, J., Vgontzas, A. N., Fernandez-Mendoza, J., & Bixler, E. O. (2018) Obstructive sleep apnea and the metabolic syndrome: The road to clinically meaningful phenotyping, improved prognosis, and personalized treatment. Sleep Medicine Reviews, 42, 211-219. https://doi.org/10.1016/j.sm-rv.2018.08.009
16. Gronfier, C., Luthringer, R., & Follenius, M. A. (1996). A quantitative evaluation of the relationship between growth hormone secretion and delta wave electroencephalographic activity during normal sleep and after enrichment in delta waves. Sleep, 19, 817-824. https://doi.org/10.1093/sleep/19.10.817
17. Grunstein, R., Wilcox, I., Yang, T. S., Gould, Y., & Hed-ner, J. (1993). Snoring and sleep apnoea in men: association with central obesity and hypertension. International Journal of Obesity and Related Metabolic Disorders, 17, 533-540.
18. Guilleminaut, C., Dement, W. C. (1978). Sleep apnoea syndromes. Alan R. Liss Inc.
19. Hirotsu, C., Haba-Rubio, J., Togeiro, S. M., Marques-Vidal, P., Drager, L. F., Vollenweider, P., Waeber, G., Bittencourt, L., Tufik, S., & Heinzer, R. (2018) Obstructive sleep apnoea as a risk factor for incident metabolic syndrome: A joined Episono and Hypnolaus prospective cohorts study. European Respiratory Journal, 52, 1801150. https://doi.org/10.1183/13993003.01150-2018
20. Horner, R. L., Brooks, D., Kozar, L. F., Tse, S., & Phil-lipson, E. A. (1995). Immediate effects of arousal from sleep on cardiac autonomic outflow in the absence of breathing in dogs. Journal of Applied Physiology, 79, 151-62. https://doi.org/10.1152/jap-pl.1995.79.1.151
21. Hotsmisligil, G. S., Shargill, N. S., Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factora: direct role in obesity-linked insulin resistance. Science, 259(5091), 87-91.
22. Hucking, K., Hamilton-Wessler, M., Ellmerer, M., Bergman, R. N. (2003). Burst-like control of lipolysis by the sympathetic nervous system in vivo. Journal of Clinical Investigation, Ш^Ау, 257-64. https://doi.org/10.1172/JCI14466
23. Ip, M. S., Lam, B., Ng, M. M., Lam W. K., Tsang, K.W.T., & Lam, K. S. L. (2002). Obstructive sleep apnea is independently associated with insulin resistance. American Journal of Respiratory and Critical Care Medicine, 165(5), 670- 676. https://doi.org/10.1164/ajrccm.165.5.2103001
24. Leproult, R., Holmback, U., & Van, C. E. (2014). Circadian misalignment augments markers of insulin resistence and inflammation, independently of sleep loss. Diabetes, 63, 1860-1869. http://dx.doi.org/10.2337/db13-1546
25. Li ,Y., Gao, Q., Li, L., Shen, Y., Lu, Q., Huang, J., Sun, C., Wang, H., Qiao, N., Wang, C., Zhang, H., & Wang,
26. T. (2019). Additive interaction of snoring and body mass index on the prevalence of metabolic syndrome among Chinese coal mine employees: A cross-sectional study. BMC Endocrine Disorders, 19(28). https://doi.org/10.1186/s12902-019-0352-9
27. Lindberg, E. (2010). Epidemiology of OSA. European Respiratory Society Monograph, 50, 51-68. https://doi.org/10.1183/1025448x.00025909
28. Loredo, J. S., Ziegler, M. G., Ancoli-Israel, S., Clausen, J. L., & Dimsdale, J. E. (1999). Relationship of arous-als from sleep to sympathetic nervous system activity and BP in obstructive sleep apnea // Chest,116, 655-659. https://doi.org/10.1378/chest.116.3.655
29. McMullan, C. J., Schernhammer, E.S., Rimm, E. B., Hu, F. B., & Forman, J. P. (2013). Melatonin secretion and the incidence of type 2 diabetes. Journal of the American Medical Association, 309, 1388-96. https://doi.org/10.1001/jama.2013.2710
30. Marin, J. M., Carrizo, S. J., Vicente, E., Agusti, A. G. N. (2005). Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An abservational study. Lancet, 365(9464), 1046-1053. https://doi.org/10.1016/s0140-6736(05)74229-x
31. Nakao, T., Kohsaka, A., Otsuka, T., Thein, Z. L., Le, H. T., Waki, H., Gouraud, S. S., Ihara, H., Nakanishi, M., Sato, F., Muragaki, Y., & Maeda, M. (2018). Impact of heart-specific disruption of the circadian clock on systemic glucose metabolism in mice. Chronobiology International, 35, 499-510. https://doi.org/10.1080/07420528.2017.1415922
32. Narkiewicz, K. & Somers, V. K. (2003). Sympathetic nerve activity in obxtructive sleep apnoea. Acta physiologica Scandinavica, 177, 385-90. https://doi.org/10.1046/j.1365-201X.2003.01091.x
33. Nonogaki, K. (2000). New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia, 43, 533-49. https://doi.org/10.1007/s001250051341
34. Peppard, P. E., Young, T., Barnet, J. H., Palta, M., Hagen, E. W., & Hla, K. M. (2013). Increased prevalence of sleep-disordered breathing in adults. American Journal of Epidemiology, 177, 1006-1014. https://doi.org/10.1093/aje/kws342
35. Peres, B. U., Allen, H. A. J., Fox, N., Laher, I., Hanly, P., Skomro, R., Almeida, F., & Ayas, N. T. (2019). Circulating biomarkers to identify cardiometabolic complications in patients with obstructive sleep apnea: A systematic review. Sleep Medicine Reviews, 44, 4857. https://doi.org/10.1016/j.smrv.2018.12.004
36. Peschke, E., Frese, T., Chankiewitz, E., Peschke, D., Preiss, U., Schneyer, U., Spessert, R., & Muhlbauer, E. (2006). Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. Journal of Pineal Research, 40, 135 - 143. https://doi.org/10.1111/j.1600-079X.2005.00287.x
37. Peschke, E.& Muhlbauer, E. (2010). New evidence for a role of melatonin in glucose regulation. Best Practice & Research: Clinical Endocrinology & Metabolism, 24, 829-841. https://doi.org/10.1016/j.beem.2010.09.001
38. Punjabi, N. M.& Beamer, B. A. (2008). Alterations in glucose disposal in sleep-disordered breathing. American Journal of Respiratory and Critical Care Medicine, 179, 235-240. http://dx.doi.org/10.1164/rccm.200809-1392OC
39. Punjabi, N. M., Shahar, E., Redline, S., Gottlieb, D. J., Givelber, R., & Resnick, H. E. (2004). Sleep-disordered breathing, glucose intolerance, and insulin resistance: The Sleep Heart Health Study. American Journal of Epidemiology, 160(6), 521-30. https://doi.org/10.1093/aje/kwh261
40. Punjabi, N. M. (2008) The epidemiology of adult obstructive sleep apnea. Proceedings of the American Thoracic Society, 5, 136-43. http://dx.doi.org/10.1513/pats.200709-155MG
41. Raz, I., Katz, A., & Spencer, M. K. (1991). Epinephrine inhibits insulin-mediated glycogenesis but enhances glycolysis in human skeletal muscle. American Journal of Physiology, 260, 430-435.
42. Reutrakul, S., Siwasaranond, N., Nimitphong, H., Sae-tung, S., Chirakalwasan, N., Chailurkit, L. O., Sri-jaruskul, K., Ongphiphadhanakul, B., & Thakkin-stian, A. (2017). Associations between nocturnal urinary 6-sulfatoxymelatonin, obstructive sleep apnea severity and glycemic control in type 2 diabetes. Chronobiology International, 34, 382-392. http://dx.doi.org/10.1080/07420528.2016.1278382
43. Roden, M., Price, T.B., Perseghin, G., Petersen, K. F., Rothman, D. L., Cline, G. W., & Shulman, G. I. (1996). Mechanism of free fatty acid-induced insulin resistance in humans. Journal of Clinical Investigation, 97, 2859-2865. https://doi.org/10.1172/ JCI118742
44. Shaw, J. E., Wilding, J. P. H., Punjabi, N. M., & Alberti, G. (2008). Sleep-disordered breathing and type 2 diabetes. A report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Research and Clinical Practice, 81, 2-12. https://doi.org/10.10Wj.diabres.2008.04.025
45. Santomauro, A. T., Boden, G., Silva, M. E., Rocha, D. M., Santos, R. F., Ursich, M. J., Strassmann, P. G., & Wajchenberg, B. L. (1999). Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes, 48, 1836-1841. https://doi.org/10.2337/diabetes.48.9.1836
46. Savransky, V., Nanayakkara, A., Li, J., Bevans, S., Smith P. L., Rodriguez-Oquendo, A., & Polotsky, V. (2007). Chronic intermittent hypoxia induces atherosclerosis. American Journal of Respiratory and Critical Care Medicine, 175(12), 1290-7. https://doi.org/10.1164/rccm.200612-1771OC
47. Scheer, F. A., Hilton, M. F., Mantzoros, C. S., & Shea, S. A. (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. Proceedings of the National Academy of Sciences, 106, 44534458. https://doi.org/10.1073/pnas.0808180106
48. Smith, W.M. (2009). Obstructive Sleep Apnea, Home Sleep Monitoring on line. Retrieved from http://emedicine.medscape.com/article/1518830-over-view.
49. Song, S. O., He, K., Narla, R. R., & Boyko, E. (2019). Metabolic consequences of obstructive sleep apnea especially pertaining to diabetes mellitus and insulin sensitivity. Journal of Diabetes & Metabolism, 43, 144-155. https://doi.org/10.4093/dmj.2018.0256
50. Trombetta, I. C., Somers, V. K., Maki-Nunes, C., Drager, L. F., Toschi-Dias, E., Alves, M. J., Fraga, R. F, Rondon, M. U., Bechara, M. G., Lorenzi-Filho, G. M. D., Ne-grao, C. E. (2010). Consequences of comorbid sleep apnea in the metabolic syndrome - implications for cardiovascular risk. Sleep, 33(9), 1193-1199. https://doi.org/10.1093/sleep/33.9.1193 PMID: 20857866.
51. Vieira, E., Burris, T. P., & Quesada, I. (2014). Clock genes, pancreatic function, and diabetes. Trends in Molecular Medicine, 20, 685-693. https://doi. org/10.1016/j.molmed.2014.10.007
52. Vgontzas, A. N., Bixler, E. O., & Chrousos, G. P. (2005). Sleep apnea is a manifestation of the metabolic syndrome. Sleep Medicine Reviews, 9(3), 211-224. https://doi.org/10.1016/j.smrv.2005.01.006
53. Vgontzas, A. N., Papanicolaou, D. A., Bixler, E. O., Lot-sikas, E. O., Zachman, A., Kales, K., Prolo, A., Wong, P., Licinio, M.-L., Gold, J., Hermida, P. W., Mastor-akos, R. C., Chrousos, G., & George, P. (2000). Circadian interleukin-6 secretion and quantity and depth of sleep. The Journal of Clinical Endocrinology & Metabolism, 84(8), 2603-2607. https://doi.org/10.1210/jcem.84.8.5894
54. Watson, N. F. (2016). Health care savings: The economic value of diagnostic and therapeutic care for obstructive sleep apnea. Journal of Clinical Sleep Medicine, 12(8) 1075-1077. http://dx.doi.org/10.5664/jcsm.6034
55. Young, T., Palta, M., Dempsey, J. Skatrud, J., Weber, S., Badr, S. (1993). The occurrence of sleep-disordered breathing among middle-aged adults. The New England Journal ofMedicine, 328, 1230-1235. http://dx.doi.org/10.1056/NEJM199304293281704
Review
For citations:
Yashchenko A.V., Konkov A.V. Mutual Influence of Obstructive Sleep Apnea and Metabolic Syndrome. Health, Food & Biotechnology. 2019;1(1):14-26. (In Russ.) https://doi.org/10.36107/hfb.2019.il.s144