Preview

Health, Food & Biotechnology

Advanced search

Problems of Genetic Prerequisites of Schizophrenia - Data of Molecular Genetic Researches

https://doi.org/10.36107/hfb.2019.il.s163

Abstract

Article contains the review of a number of molecular genetic researches of schizophrenia of the last years in which some problems of her genetic prerequisites are tracked. In article theories of constancy of schizophrenia are presented to populations. Main types of genetic deviations which are associated with the diagnosis of schizophrenia are described. In work the difficulties of interpretation of results which have arisen in the course of researches are lit, the lack of knowledge of mechanisms of an expression of the genes associated with schizophrenia, need of joint studying of genomic variations and the related neurophysiological mechanisms, search of associations with private phenotypical manifestations (psychopathological symptoms and syndromes) and their combinations is noted. It is noted that the search for gene-phenotypic associations is still carried out without taking into account the clinical and psychopathological variability of schizophrenia and related disorders. The prospects of studying the genetic variants associated with frequent phenotypic manifestations (psychopathological symptoms, syndromes and types of clinical course), as well as a variety of clinical pictures of psychoses, which, as a rule, are a reflection of the general etiology and pathogenetic consequences of these disorders, are substantiated.

About the Authors

A. M. Reznik
Moscow University of Food Production
Russian Federation

Aleksandr M. Reznik

11 Volokolamskoe highway, Moscow, 125080



G. P. Kostyuk
Psychiatric Clinical Hospital № 1 named after N. A. Alexseev of Department of Healthcare of Moscow; Moscow University of Food Production
Russian Federation

Georgy P. Kostyuk

2, Zagorodnoe shosse, Moscow, 115191; 11 Volokolamskoe highway, Moscow, 125080



A. Y. Morozova
National Medical Research Center of Psychiatry and Narcology named after V. P. Serbskiy
Russian Federation

Anna Y. Morozova

23, Kropotkinsky pereulok, Moscow, 11903



N. V. Zakharova
Psychiatric Clinical Hospital № 1 named after N. A. Alexseev of Department of Healthcare of Moscow
Russian Federation

Natalia V. Zakharova

2, Zagorodnoe shosse, Moscow, 115191



References

1. Alfimova, M. V., Golimbet, V. E., Korovaitseva, G. I., Lezheiko, T. V., Abramova, L. I., Aksenova, E. V., &Bolgov, M. I. (2014). Effect of 5-HTTLPR polymorphism of the serotonin transporter (SLC6A4) on the recognition of mimicry emotions in schizophrenia. Zhurnal nevrologii i psihiatrii im. Korsakova [Journal of Neurology and Psychiatry after Korsakov], 1,42-48. https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2014/1/031997-7298201417

2. Ivanov, M.V. & Neznanov, N.G. (2008). Negativnye i kognitivnye rasstrojstva pri endogennyh psihozah: diagnostika, klinika, terapiya [Negative and cognitive disorders in endogenous psychoses: diagnostics, clinic, therapy]. Izdatel’stvo NIPNI im. V.M. Bekhtereva. Материал опубликован в соответствии с международной лицензией Creative Commons Attribution 4.0.

3. Nuten, M. M., Cikhon, S., Shmael, K., & Ritshel, M. (2013). Genetika shizofrenii i bipolyarnogo rasstrojstva [Genetics of schizophrenia and bipolar disorder]. In M.R. Speicher S.E. Antanarakis and A.G. Motulsky (Ed.), Human genetics according to Vogel and Motulsky. Problems and Approaches, (4th edition, pp. 828-845).

4. Kolesnichenko, E. V., Barylnik, Yu. B., & Golymbet, V. E. (2015). The effect of the BDNF gene on the phenotypic expression of paranoid schizophrenia. Social’naya i klinicheskaya psihiatriya [Social and Clinical Psychiatry], 25(2), 45 - 49. https://psychiatr.ru/magazine/scp/65/853

5. Pakhomova, S. A., Korovaitseva, G. I., Monchakovskaya, M. Yu., Villanov, V. B., Frolova, L. P., Kasparov, S. V., Kolesnichenko, E. V., & Golimbet, V. E. (2010). Molecular genetic study of schizophrenia with an early onset. Zhurnal nevrologii i psihiatrii im. Korsakova [Journal of Neurology and Psychiatry after Korsakov], 110(2), 66-69. https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2010/2/031997-72982010212

6. Tiganov, A. S., Yurov, Yu. B., Vorsanova, S. B., & Yurov I. Yu. (2012). Brain genome instability: etiology, pathogenesis, and new biological markers of mental illness. Vestnik RAMN [Bulletin of RAMS], 9, 45-53. https://doi.org/10.15690/vramn.v67i9.406

7. Chistovich, A. S. (2007). Psihiatricheskie etyudy. [Psychiatric studies]. Aletheia

8. Talbott, J. A. (2001). Uroki otnositel’no hronicheski psihicheski bol’nyh, izvlechennye nachinaya s 1955 [Lessons from chronically mentally ill patients, learned since 1955] In Ensill, R.J., Holliday, S., Higenbottam, J. (Ed.) Schizophrenia. The study of the spectrum of psychoses. Medicine.

9. Yurov, I. Yu., Vorsanova, S. G., & Yurov, Yu. B. (2014). Genomnye i hromosomnye bolezni central’noj nervnoj sistemy: molekulyarnye i citogeneticheskie aspekty [Genomic and chromosomal diseases of the central nervous system: molecular and cytogenetic aspects]. Medpraktika-M

10. Abbs, B., Achalia, R. M., Adelufosi, A. O., Aktener, A. Y., Beveridge, N. J., Bhakta, S. G., Blackman, R. K. , Bora, E., Byun, M. S., Cabanis, M., Carrion, R., Castellani, C. A., Chow, T. J., Dmitrzak-Weglarz, M., Gayer-Anderson, C., Gomes, F. V., Haut, K., Hori, H., Kantrowitz, J. T., Kishimoto, T., Lee, F. H., Lin, A., Palaniyappan, L., Quan, M., Rubio, M. D., Ruiz de Azua, S., Sahoo, S., Strauss, G. P., Szczepankiewicz, A., Thompson, A.D., Trotta, A., Tully, L. M., Uchida, H., Velthorst, E., Young, J. W., O’Shea, A., & Delisi, L. E. (2012). The 3rd schizophrenia international research society conference, 14-18 April 2012, Florence, Italy: Summaries of oral sessions. Schizophrenia Research, 141(1), 1-24. https://doi.org/10.1016/j.schres.2012.07.024

11. Allen, N. C., Bagade, S., McQueen, M. B., Ioannidis, J. P., Kavvoura, F. K., Khoury, M. J., Tanzi, R. E., & Bertram, L. (2008). Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: The SzGene database, Nature Genetics, 40(7), 827-834. https://doi.org/10.1038/ng.171

12. Awadalla, P., Gauthier, J., Myers, R. A., Casals, F., Hamdan, F. F., Griffing, A. R., Cote, M., Henrion E., Spiegelman, D., Tarabeux, J., Piton, A., Yang, Y., Boyko, A., Bustamante, C., Xiong, L., Rapoport, J. L., Addington, A. M., DeLisi, J. L., Krebs, M. O., Joober, R., Millet, B., Fombonne, E., Mottron, L., Zilversmit, M., Keebler, J., Daoud, H., Marineau, C., Roy-Gagnon, M. H., Dube, M. P., Eyre-Walker, A., Drapeau, P., Stone, E. A., Lafreniere, R. G., & Rouleau, G. A. (2010). Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. American Journal of Human Genetics, 87(3), 316324. https://doi.org/10.1016/j.ajhg.2010.07.019

13. Bassett, A. S. & Chow, E. W. C. (1999). 22q11 Deletion Syndrome: A Genetic Subtype of Schizophrenia. Biol. Psychiatry, 46(7), 882-891. https://doi.org/10.1016/s0006-3223(99)00114-6

14. Bassett, A. S. & Chow E. W. C. (2008). Schizophrenia and 22q11.2 Deletion Syndrome. Current Psychiatry Reports, 10(2), 148-157. https://doi.org/10.1007/s11920-008-0026-1

15. Benros, M. E., Mortensen, P. B., & Eaton, W. W. (2012). Autoimmune diseases and infections as risk factors for schizophrenia. Annals of the New York Academy of Science, 1262(1), 56-66. https://doi.org/10.1111/j.1749-6632.2012.06638.x

16. Cardno, A. G. & Gottesman, I. I. (2002). Twin studies of schizophrenia: From bow-and-arrow concordances to star wars Mx and functional genomics. American Journal of Medical Genetics, 97(1), pp. 12-17. https://doi.org/10.1002/(SICI)1096-8628(200021)97:1<12::AID-AJMG3>3.0.CO;2-U

17. Chong, H. Y., Teoh, S. L.,Bin-Chia Wu, D., Kotirum, S., Chiou, C-F., & Chaiyakunapruk, N. (2016). Global economic burden of schizophrenia: a systematic review. Neuropsychiatric Disease Treatment, 2016, 12, 357-373. https://doi.org/10.2147/NDT.S96649

18. Clifton, N. E., Hannon, E., Harwood, J. C., Di Florio, A., Thomas, K. L., Holmans, P. A., Walters J. T. R., O’Donovan M. C., Owen M. J., Pocklington A. J. & Hall, J. (2019). Dynamic expression of genes associated with schizophrenia and bipolar disorder across development. Translational Psychiatry, 9(1), 1-9. https://doi.org/10.1038/s41398-019-0405-x

19. Costain, G. & Bassett, A. S. (2012). Clinical applications of schizophrenia genetics: Genetic diagnosis, risk, and counseling in the molecular era. The Application of Clinical Genetics, 5, 1-18. https://doi.org/10.2147/TACG.S21953

20. Craddock, N. & Owen, M. J. (2010). The Kraepelinian dichotomy - going, going ... but still not done. British journal of psychiatry, 196(2),pp. 92-95. https://doi.org/10.1192/bjp.bp.109.073429

21. Crow, T. J. (1980). Positive and negative schizophrenic symptoms and the role of dopamine. British journal of psychiatry, 137, pp. 383-386. https://doi.org/10.1192/S0007125000071919

22. Dalman, C., Allebeck, P., Cullberg, J., Grunewald, C., & Koster, M. (1999). Obstetric complications and the risk of schizophrenia: a longitudinal study of a national birth cohort. Archives of General Psychiatry, 56(3), 234-240. https://doi.org/10.1001/archpsyc.56.3.234

23. Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia // Archives of General Psychiatry, 64, 532-542. https://doi.org/10.1001/archpsyc.64.5.532

24. Dickinson, D., Straub, R. E., Trampush, J. W., Gao, Y., Feng, N., Xie, B., Shin, J. H., Lim, H. K., Ursini, G., Bigos, K. L., Kolachana, B., Hashimoto, R., Takeda, M., Baum, G. L., Rujescu, D., Callicott, J. H., Hyde, T. M., Berman, K. F., Kleinman, J. E., & Weinberger, D. R. (2014). Differential effects of common variants in SCN2A on general cognitive ability, brain physiology, and messenger RNA expression in schizophrenia cases and control individuals. JAMA Psychiatry, 71(6), 647-656. https://doi.org/10.1001/jamapsychiatry.2014.157

25. Doi, N., Hoshi, Y., Itokawa, M., Yoshikawa, T., Ichikawa, T., Arai, M., Usui, C., & Tachikawa, H. (2012). Paradox of schizophrenia genetics: Is a paradigm shift occurring? Behavioral and Brain functions, 8(1):28. https://doi.org/10.1186/1744-9081-8-28

26. Ey, H., Bernard, P., & Brisset, C. (2010). Manuel de Psychiatrie. Masson.

27. Falconer, D. S. (1965). The inheritance of liability to certan disease, estimated from the incidence among relatives, Annals of Human Genetics, 29 (1), 51-76. https://doi.org/10.1111/j.1469-1809.1965.tb00500.x

28. Fleischhacker, W. W., Arango, C., Arteel, P., Barnes, T. R., Carpenter, W., Duckworth, K., Galderisi, S., Halpern, L., Knapp, M., Marder, S., R., Moller, M., Sartorius, N., & Woodruff, P. (2014). Schizophrenia - time to commit to policy change. Schizophrenia Bulletin, 40(3), 165-194. https://doi.org/10.1093/schbul/sbu006

29. Foussias, G. & Remington, G. (2010) Negative Symptoms in Schizophrenia: Avolition and Occam’s Razor. Schizophrenia Bulletin, 36(2), 359369. https://doi.org/10.1093/schbul/sbn094

30. Franzek, E. & Beckmann, H. (1998). Different genetic background of schizophrenia spectrum psychoses: a twin study. American Journal of Psychiatry, 155(1), pp. 76-83. DOI: 10.1176/ajp.155.1.76

31. Fuller Torrey, E. & Yolken, R. H. (2010). Psychiatric genocide: Nazi attempts to eradicate schizophrenia, Schizophrenia Bulletin, 36(1), 26-32. https://doi.org/10.1093/schbul/sbp097

32. Gershon, E. S., Alliey-Rodriguez, N., & Liu, C. (2011). After GWAS: Searching for genetic risk for schizophrenia and bipolar disorder, American Journal of Psychiatry, 168(3), 253-256. https://doi.org/10.1176/appi.ajp.2010.10091340

33. Girard, S. L., Xiong, L., Dion, P. A., & Rouleau, G. A. (2011). Where are the missing pieces of the schizophrenia genetics puzzle? Current Opinion in Genetics & Development, 21(3), 310-316. https://doi.org/10.1016/j.gde.2011.01.001

34. Gordon, E., Liddell, B. J., Brown, K. J., Bryant, R., Clark, C. R., Das, P., Dobson-Stone, C., Falconer, E., Felmingham, K., Flynn, G., Gatt, J. M., Harris, A., Hermens, D. F., Hopkinson, P. J., Kemp, A. H., Kuan, S. A., Lazzaro, I., Moyle, J., Paul, R. H., Rennie, C. J., Schofield, P., Whitford, T., & Williams, L. M. (2007). Integrating objective gene-brain-behavior markers of psychiatric disorders, Journal of Integrative Neuroscience, 6(1), 1-34. https://doi.org/10.1142/S0219635207001465

35. Guella, I., Sequeira, A., Rollins, B., Morgan L., Myers, R. M., Watson, S. J., Akil, H., Bunney, W. E., Delisi, L. E., Byerley, W., & Vawter, M. P. (2014). Evidence of allelic imbalance in the schizophrenia susceptibility gene ZNF804A in human dorsolateral prefrontal cortex. Schizophrenia Research, 152(1), 111-116. https://doi.org/10.1016/j.schres.2013.11.021

36. Hagemeyer, N., Goebbels, S., Pariol, S., Kastner, A., Hofer, S., Begemann, M., Gerwig, U. C., Boretius, S., Wieser, G. L., Ronnenberg, A., Gurvich, A., Heckers, S. H., Frahm, J., Nave, K. A., & Ehrenreich, H. (2012). A myelin gene causative of a catatoniadepression syndrome upon aging. EMBO Molecular Medicine, 4(6), 528-539. https://doi.org/10.1002/emmm.201200230

37. Harrison, P. J. (2015). Recent genetic findings in schizophrenia and their therapeutic relevance. Journal of Psychopharmacology, 29(2), 85-96. https://doi.org/10.1177/0269881114553647

38. Harvey, P. D., Heaton, R. K., Carpenter, W. T., Green M. F., Gold J. M., & Schoenbaum M. (2012). Diagnosis of schizophrenia: Consistency across information sources and stability of the condition, Schizophrenia Research, 140(1-3), 9-14. https://doi.org/10.1016/j.schres.2012.03.026

39. Hess, J. L. & Glatt, S. J. (2014). How might ZNF804A variants influence risk for schizophrenia and bipolar disorder? A literature review, synthesis, and bioinformatic analysis. American Journal of Medical Genetics, part B. Neuropsychiatric Genetics, 165B(1), pp.28-40. https://doi.org/10.1002/ajmg.b.32207

40. Hill, M. J. & Bray, N. J. (2011). Allelic differences in nuclear protein binding at a genome-wide significant risk variant for schizophrenia in ZNF804A. Molecular Psychiatry, 16(8), 787-789. https://doi.org/10.1038/mp.2011.21

41. Huo, Y., Li, S., Liu, J., Li, X., & Luo, X-J. (2019). Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk. Nature Communications. 10. 670. https://doi.org/10.1038/ s41467-019-08666-4

42. Johnson, E. C., Border, R., Melroy-Greif, W. E., de Leeuw, C., Ehringer, M. A., & Keller, M. C. (2017) No evidence that schizophrenia candidate genes are more associated with schizophrenia than non-candidate genes. Biological Psychiatry. 82(10), 702-708. https://doi.org/10.10Wj.biopsych.2017.06.033

43. Kasckov, J., Felmet, K., & Zisook, S. (2011). Managing suicide risk in patients with schizophrenia. CNS Drugs, 25(2),129-143. https://doi.org/10.2165/11586450-000000000-00000

44. Keller, M. C. & Miller, G. (2006). Resolving the paradox of common, harmful, heritable mental disorders: which evolutionary genetic models work best? Behavioral and Brain Sciences, 29(4), 385-404. https://doi.org/10.1017/S0140525X06009095

45. Kendler, K. S. (2015). A joint history of the nature of genetic variation and the nature of schizophrenia. Molecular Psychiatry, 20, pp. 77-83. https://doi.org/10.1038/mp.2014.94

46. Levine, J. (2013). Risk loci with shared effects on major psychiatric disorders. Lancet, 382(9889), p. 307, https://doi.org/10.1016/S0140-6736(13)61632-3

47. Lichtenstein, P., Yip, B. H., Bjork, C., Pawitan, Y., Cannon, T. D., Sullivan, P. F., & Hultman, C. M. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet, 373(9659), 234-239. https://doi.org/10.1016/S0140-6736(09)60072-6

48. Loh, P-R., Bhatia, G., Gusev, A., Finucane, H. K., Bulik-Sullivan, B. K., Pollack, S. J.; Schizophrenia Working Group of Psychiatric Genomics Consortium, de Candia, T. R., Lee, S. H., Wray, N. R., Kendler, K. S., O’Donovan, M. C., Neale, B. M., Patterson, N., & Price, A. L. (2015). Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nature Genetics, 47(12), pp.1385-1392. https://doi.org/10.1038/ng.3431

49. Ma, C., Gu, C., Huo, Y., Li, X., & Luo, X-J. (2018) The integrated landscape of causal genes and pathways in schizophrenia. Translational Psychiatry, 8, 67. https://doi.org/10.1038/s41398-018-0114-x

50. McClellan, J. M., Susser, E., & King, M. C. (2007). Schizophrenia: A common disease caused by multiple rare alleles. The British Journal of Psychiatry: the journal of mental science, 190, 194199. https://doi.org/10.1192/bjp.bp.106.025585

51. Messias, E., Chen, C-Y., & Eaton, W. W. (2007). Epidemiology of Schizophrenia: Review of Findings and Myths. Psychiatric Clinic in North America, 30, 323-338. https://doi.org/10.1016/j.psc.2007.04.007

52. Mirnics, K., Middleton, F. A., Lewis, D. A., Levitt, P. (2001). Analysis of complex brain disorders with gene expression microarrays: Schizophrenia as a disease of the synapse. Trends Neurosciences, 24, pp. 479-486. https://doi.org/10.1016/s0166-2236(00)01862-2

53. Need, A. C. & Goldstein, D. B. (2009). Next generation disparities in human genomics: Concerns and remedies. Trends in Genetics, 25(11), 489-494. https://doi.org/10.10Wj.tig.2009.09.012

54. Pakhomova, S. A., Korovaitseva, G. I., Monchakovskaya, M. Yu., Vilyanov, V. B., Frolova, L. P., Kasparov, S. V., Kolesnichenko, E. V., & Golimbet, V. E. (2011). Molecular genetic studies of early-onset schizophrenia. Neuroscience and Behavioral Physiology, 41(5), 532-535. https://doi.org/10.1007/s11055-011-9450-5

55. Ripke, S., Neale, B. M, Corvin, A., Walters, J. TR., Farh, K.-H., Holmans, P. A, ... & O’Donovan Michael C. (Schizophrenia Working Group of the Psychiatric Genomics Consortium). (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421-427. https://doi.org/10.1038/nature13595

56. Sekar, A., Bialas, A. R., de Rivera, H., Davis, A., Hammond, T. R., Kamitaki, N., Tooley, K., Presumey, J., Baum, M., Van Doren, V., Genovese, G., Rose, S. A., Handsaker, R. E. Schizophrenia Working Group of the Psychiatric Genomics Consortium, Daly, M. J., Carroll, M. C., Stevens, B., McCarroll, S. A. (2016). Schizophrenia risk from complex variation of complement component 4. Nature,530(7589), 177183. https://doi.org/10.1038/nature16549

57. Smith, C.L., Bolton, A., & Nguyen, G.(2010). Genomic and epigenomic instability, fragile sites, schizophrenia and autism. Current Genomics, 11(6), 447-469. https://doi.org/10.2174/138920210793176001

58. Soyka, M. (2011). Neurobiology of aggression and violence in schizophrenia. Schizophrenia Bulletin, 37(5), 913-920. https://doi.org/10.1093/schbul/sbr103

59. Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Archives of General Psychiatry, 60(12), 1187-1192. https://doi.org/10.1001/archpsyc.60.12.1187

60. Thibaut, F. (2006). Schizophrenia: An example of complex genetic disease. The World Journal of Biological Psychiatry, 7, 194-197. https://doi.org/10.1080/15622970600994313

61. Tsai, S-J. (2018) Critical Issues in BDNF Val66Met Genetic Studies of Neuropsychiatric Disorders. Frontiers in Molecular Neuroscience. 11, 156. https://doi.org/10.3389/fnmol.2018.00156

62. Uher, R. & Zwicker, A. (2017). Этиология в психиатрии: обзор вопросов полигенных и средовых факторов в развитии психических расстройств. World Psychiatry, 16(2), 121-129. Retrieved from http://psychiatr.ru/magazine/wpa/91/1228

63. Valencia, M., Fresan, A., Barak, Y., Juarez F., Escamilla R., & Saracco R. (2015). Predicting functional remission in patients with schizophrenia: a cross-sectional study of symptomatic remission, psychosocial remission, functioning, and clinical outcome. Neuropsychiatric Disease and Treatment, 11, 2339-2348. https://doi.org/10.2147/NDT.S87335

64. Walsh, T., McClellan, J. M., McCarthy, S. E., Addington, A. M., Pierce, S. B., Cooper, G. M., Nord, A. S., Kusenda, M., Malhotra, D., Bhandari, A., Stray, S. M., Rippey, C. F., Roccanova, P., Makarov, V., Lakshmi, B., Findling, R. L., Sikich, L., Stromberg, T., Merriman, B., Gogtay, N., Butler, P., Eckstrand, K., Noory, L., Gochman, P., Long, R., Chen, Z., Davis, S., Baker, C., Eichler, E. E., Meltzer, P. S., Nelson, S. F., Singleton, A. B., Lee, M. K., Rapoport, J. L., King, M. C., & Sebat, J. (2008). Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 320(5875), 539-543. https://doi.org/10.1126/science.1155174

65. Wray, N. R. & Gottesman, I. I. (2012). Using summary data from the Danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Frontiers in Genetics, 3(118), 1-12. https://doi.org/10.3389/fgene.2012.00118

66. Xu, B., Ionita-Laza, I., Roos, J.L., Boone, B., Woodrick, S., Sun, Y., Levy, S., Gogos, J.A., & Karayiorgou, M. (2012). De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nature Genetics, 44(12), 1365-1369. https://doi.org/10.1038/ng.2446

67. Xu, B., Roos, J. L., Dexheimer, P., Boone, B., Plummer, B., Levy, S., Gogos, J.A., & Karayiorgou, M. (2011). Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nature Genetics, 43(9), 864-868. https://doi.org/10.1038/ng.902

68. Zhai, J., Yu, Q., Chen, M., Gao, Y., Zhang, Q., Li, J., Wang, K., Ji, F., Su, Z., Li, W., Li, X., & Qiao, J. (2013). Association of the brain-derived neurotrophic factor gene G196A rs6265 polymorphisms and the cognitive function and clinical symptoms of schizophrenia. International Journal of Clinical and Experimental Pathology, 6(8), 1617-1623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726978/pdf/ijcep0006-1617.pdf


Review

For citations:


Reznik A.M., Kostyuk G.P., Morozova A.Y., Zakharova N.V. Problems of Genetic Prerequisites of Schizophrenia - Data of Molecular Genetic Researches. Health, Food & Biotechnology. 2019;1(1):27-45. (In Russ.) https://doi.org/10.36107/hfb.2019.il.s163

Views: 393


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)