Preview

Health, Food & Biotechnology

Advanced search

The Influence of Wave Effects on the Activity of Amylases of Microbial Origin

https://doi.org/10.36107/hfb.2019.il.s49

Abstract

The article is devoted to the study of the influence of wave, first of all, optical effects on enzyme preparations used in food production, in order to increase the activity of target enzymes. Information is given on the possibility of changing of characteristics of objects of different nature, of increasing the hydrolytic, in particular, amylolytic activity of enzymes of microbial origin using such treatment methods. The results of studying of the effect of treatment with light with wavelengths from the range 364 - 980 nm of the enzyme preparation Amylorizin P10x on its amylolytic ability are considered; the direction and intensity of the influence of such processing was evaluated by comparing the amount of starch hydrolyzed in the experimental and control variants. It was shown that photo processing under experimental conditions allowed to increase the amount of hydrolyzed starch by 20–70% compared with the control, depending on the wavelength of light used for processing. In this way, it is advisable to continue research in order to clarify the parameters of the light treatment, providing a significant technological and / or economic effect.

About the Authors

D. V. Karpenko
Moscow University of Food Production
Russian Federation

Dmitriy V. Karpenko

11 Volokolamskoe highway, Moscow, 125080



K. V. Shalaginov
Moscow University of Food Production
Russian Federation

Kirill V. Shalaginov

11 Volokolamskoe highway, Moscow, 125080



References

1. Danil'chuk, T. N., & Rogov, I. A. (2012). Modification of the properties of amylolytic enzymes of plant raw materials by acoustic effects of low power. In Perspective enzyme preparations and biotechnological processes in food and feed technologies [Perspektivnye fermentnye preparaty i biotekhnologicheskie processy v tekhnologiyah produktov pitaniya i kormov] (pp. 101-105).

2. Danil'chuk, T. N., Rogov, I. A., & Abdrashitova, G. G. (2012). The use of low-intensity acoustic treatment in the processes of biotransformation of raw meat. Food Industry [Pishchevaya promyshlennost’], 4, 34-37.

3. Danil’chuk, T. N., Rogov, I. A., & Abdrashitova, G. G. (2017). Innovacionnye tehnologii pererabotki mjasnogo syr’ja s ispol’zovaniem nizkointensivnogo akusticheskogo vozdejstvija [Innovative technologies for processing of meat raw materials using low-intensity acoustic procrssing]. Hranenie i pererabotka sel’hozsyr’ya [Storage and Processing of Farm Products], 4, 15-17.

4. Danil'chuk, T. N., Rogov, I. A., & Demidov, A. V. (2014). Increasing the antioxidant activity of seedlings of cereal crops under the influence of infrared radiation. Hranenie i pererabotka sel’hozsyr’ya [Storage and processing of agricultural raw materials], 9, 16-21.

5. Danil'chuk, T. N., Yur'ev, D. N., & Ratnikov, A. Yu. (2008). Stimulation of biochemical processes in germinating grain by acoustic and electrophysical methods of influence. Pivo i napitki: bezalkogol’nye, alkogol’nye, soki, vino [Beer and beverages: nonalcoholic, alcoholic, juices, wine], 6, 11-14.

6. Dan'ko, S. F., Danil'chuk, T. N., Yur'ev, D. N., & Egorov, V. V. (2000). Barley germination after exposure to sound of different frequency. Pivo i napitki: bezalkogol’nye, alkogol’nye, soki, vino [Beer and beverages: non-alcoholic, alcoholic, juices, wine], 3, 22-26.

7. Demchenko, V. A., Obrazcova, A. S., & Ivanova, M. A. (2016). The influence of ultrasonic effects on the physico-chemical parameters of kvass. Vestnik VGUIT [Bulletin of VGUIT], 4, 18-21. http://dx.doi.org/10.20914/2310-1202-2016-4-18-21

8. Zhmatova, G. V., Nefjodov, A. N., Gordeev, A. S., & Kilimnik, A. B. (2005). Methods of intensification of technological processes for the extraction of biologically active substances from plant materials. Vestnik TGTU [Bulletin of TSTU], 11(3), 701-707.

9. Karpenko, D. V., & Berketova, M. A. (2012). Optimization of parameters of acoustic treatment of brewing barley malt. Pivo i napitki: bezalkogol’nye, alkogol’nye, soki, vino [Beer and beverages: nonalcoholic, alcoholic, juices, wine], 4, 8-10.

10. Karpenko, D. V., & Berketova, M. A. (2012). Studying the effect of acoustic oscillations on the quality of brewing barley malt. Pivo i napitki: bezalkogol’nye, alkogol’nye, soki, vino [Beer and beverages: nonalcoholic, alcoholic, juices, wine], 5, 14-16.

11. Karpenko, D. V., Kravchenko, V. S., & Shalaginov K. V. (2017) Activation of an amylolytic enzyme preparation by wave effects. Pivo i napitki: bezalkogol’nye, alkogol’nye, soki, vino [Beer and beverages: non-alcoholic, alcoholic, juices, wine], 5, 16-19.

12. Karpenko, D. V., & Pozdnyakova, I. E'. (2016). The advance of hop’s extract yield by acoustic treatment. Pivo i napitki: bezalkogol’nye, alkogol’nye, soki, vino [Beer and beverages: non-alcoholic, alcoholic, juices, wine], 6, 46-49.

13. Karpenko, D. V., Tixonova, T. A., Xodarev, K. K., Ovchinnikov, Yu. B., & Bezgubov, V. V. (2015). Sposob aktivatsii amiloliticheskogo fermentnogo preparata [The method of activation of the amylolytic enzyme preparation]. Beer and beverages: non-alcoholic, alcoholic, juices, wine, 4, 42-44.

14. Martirosjan, L. Ju., Garibjan, C. S., & Kosobrjuhov, A. A. (2018). The influence of the spectral composition of light on the activity of the photosynthetic apparatus of cucumber plants under the conditions of aeroponic cultivation. Novye i netradicionnye rasteniya i perspektivy ih ispol’zovaniya [New and unconventional plants and prospects for their use], 13, 294-296.

15. Rogov, I. A., & Danil'chuk, T. N. (2017). The mechanism of biological effects of extremely low doses of vibrational and wave effects in the range of sound frequencies. Part II. Physico-chemical model of the influence of low-intensive physical factors on the activity of hydrolytic enzymes. Elektronnaya obrabotka materialov [Electronic processing of materials], 53(1), 70 -73. http://dx.doi.org/10.5281/zenodo.1049046

16. Tihomirova, N. A., & Kochubej-Litvinenko, O. V. (2014). Prospects for the use of sonochemical processing in biotechnology of fermented dairy products. In: Perspektivnye biotekhnologicheskie processy v tekhnologiyah produktov pitaniya i kormov [Perspective biotechnological processes in the technology of food and feed] (pp. 276-282).

17. Hodunova, O. S., & Silant'eva, L. A. (2017). The influence of various processing methods on microbiological indicators of germinated oat seeds. Nauchnyj zhurnal NIU ITMO. Seriya «Processy i apparaty pishchevyh proizvodstv» [Scientific journal NIU ITMO. Series “Processes and equipment of food productions”], 1, 3-8. https://dx.doi.org/10.17586/2310-1164-2017-10-1-3-8

18. Shestakov, S. D., Krasulja, O. N., Artemova, Ja. A., & Tihomirova, N. A. (2011). Ultrasonic sonochemical water treatment. Molochnaya promyshlennost’ [Dairy Industry], 5, 39-43.

19. Shhebelev, L. I., & Danil'chuk, T. N. (2017) The influence of low-intensity acoustic treatment on the vital activity of Lactobacillus plantarum bacterium. In: Zhivye sistemy i biologicheskaya bezopasnost’ naseleniya [Living systems and biological safety of the population] (pp. 13-15).

20. Aladjadjiyan, A. (2002). Increasing carrot seeds (Daucus carota L.), cv. Nantes, viability through ultrasound treatment. Bulgarian Journal of Agricultural Sciences, 8, 469-472.

21. Chandrapala, J., Oliver, C., Kentish, S., & Ashokkumar, M. (2012). Ultrasonics in food processing - Food quality assurance and food safety. Trends in Food Science & Technology, 26(2), 88-98. http://dx.doi.org/10.1016/j.tifs.2012.01.010

22. Danilchuk, T., & Ganina, V. (2018). Prospects of using extremely low doses of physical factors impact in food biotechnology. Food and Raw Materials, 6(2), 305-313. https://dx.doi.org/10.21603/2308-4057-2018-2-305-313

23. Gasser, C. (2014). Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase. Proceedings of the National Academy of Sciences of the United States of America 111, 8803-8808. https://dx.doi.org/10.1073/pnas.1321600111

24. Jayakumar, M. K., Idris, N. M., & Zhang, Y. (2012). Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proceedings of the National Academy of Sciences of the United States of America, 109, 8483-8488. http://dx.doi.org/10.1073/pnas.1114551109

25. Karpenko, D. V., Gernet, M. V., Krjukova, E. V., Gribkova, I. N., Nurmukhanbetova, D. E., & Assembayeva, E. K. (2019). Acoustic vibration effect on genus Saccaromyces yeast population development. News of the Academy of Sciences of the Republic of Kazakhstan. Series of geology and technical sciences, 4(436), 103-112. https://dx.doi.org/10.32014/2019.2518-170X.103

26. Povey, M. J. W., & Mason, T. J. (Eds). (1998) Ultrasound in Food Processing. London Blackie Academic & Professional.

27. Ryu, M. H. (2014). Engineering adenylate cyclases regulated by near-infrared window light. Proceedings of the National Academy of Sciences of the United States of America, 111, 10167-10172. http://dx.doi.org/10.1073/pnas.1324301111

28. Yaldagard, M., Mortazavi, S. A., & Tabatabaie, F. (2008). The Effectiveness of Ultrasound Treatment on the Germination Stimulation of Barley Seed and its Alpha-Amylase Activity. International Journal of Chemical and Biomolecular Engineering, 1(1), 55-58.

29. Yaldagard, M., Mortazavi, S. A., & Tabatabaie, F. (2008). Application of Ultrasonic Waves as a Priming Technique for Accelerating and Enhancing the Germination of Barley Seed: Optimization of Method by the Taguchi Approach. Journal of the Institute of Brewing, 114(1), 14-21. http://dx.doi.org/10.1002/j.2050-0416.2008.tb00300.x


Review

For citations:


Karpenko D.V., Shalaginov K.V. The Influence of Wave Effects on the Activity of Amylases of Microbial Origin. Health, Food & Biotechnology. 2019;1(1):83-91. (In Russ.) https://doi.org/10.36107/hfb.2019.il.s49

Views: 452


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)