Preview

Health, Food & Biotechnology

Advanced search

Obtaining a Cell Culture of Ginger

https://doi.org/10.36107/hfb.2019.i4.s280

Abstract

Ginger, as a spice and medicinal plant from ancient times to the present, is in great demand in India and China due to the wide range of effects on the human body. In the wild, ginger does not grow by itself, therefore it is grown on special plantations covering large areas on an industrial scale. Climatic conditions are also important for active plant growth. Standard ginger breeding programs are difficult due to low productivity and lack of natural seed quantity. The biotechnological method of cultivating plant cells makes it possible to obtain an unlimited number of identical cells in 3 to 4 weeks. Zingiber sp. rhizomes, stems and leaves are served as the starting material for research and obtaining callus cell cultures. To obtain primary callus for their further cultivation, various modifications of the Murashige and Skoog medium, as well as the Hamburg medium, were used. Explants were cultured in the dark at 26 ° C and a humidity of 60–70% . The growing cycle was 25–30 days. According to the results of the analysis, new data on the properties of Zingiber plant cell cultures was obtained, ways to solve a number of global environmental problems were proposed. As a result of using the classical method of obtaining a callus culture of a sterile intact plant was obtained a new initial ginger cell strain in vitro with stable growth characteristics.

About the Authors

L. A. Ivanova
Moscow State University of Food Production
Russian Federation

Lyudmila A. Ivanova

11 Volokolamskoe highway, Moscow, 125080, Russian Federation



I. A. Fomenko
Moscow State University of Food Production; JSC “Biokhimmash”
Russian Federation

Ivan A. Fomenko

11 Volokolamskoe highway, Moscow, 125080, Russian Federation

4 Klara Cetkin str., Moscow, 127299, Russian Federation



V. V. Fomenko
JSC “Biokhimmash”
Russian Federation

Viktoriya V. Fomenko

Klara Cetkin str., Moscow, 127299, Russian Federation



L. A. Churmasova
Moscow State University of Food Production
Russian Federation

Lyudmila A. Churmasova

11 Volokolamskoe highway, Moscow, 125080, Russian Federation



A. M. Shhennikova
Moscow State University of Food Production
Russian Federation

Anastasiya M. Shhennikova

11 Volokolamskoe highway, Moscow, 125080, Russian Federation



References

1. Bykov, I. I., & Kompantsev, D. V. (2017). Extraction of biologically active substances from Zingiber Officinale Roscoe in phytopreparation technology (review). Vestnik Smolenskoj gosudarstvennoj medicinskoj akademii [Bulletin of the Smolensk State Medical Academy], 16(2), 170-179.

2. Gabruk, N. G., & Thuen, L. V. (2010). Instrumental methods in the study of the component composition of the biologically active substances of ginger (Zingiber officinale). Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Estestvennye nauki [Scientific Reports of Belgorod State University. Series: Natural Sciences], 74(3), 77-81.

3. Karomatov, I. D., & Muzaffarova, S. K. (2019). Ginger is a plant with antioxidant and anti-inflammatory properties. Biologiya i integrativnaya medicina [Biology and integrative medicine], 1(29), 78-85

4. Makhankov, V.V. (2001). Sravnitel’noe issledovanie kachestvennogo sostava i kolichestvennogo soderzhaniya triterpenovyh glikozidov, produciruemyh imbirem i kletochnoj kul’turoj na ego osnove [A comparative study of the qualitative composition and quantitative content of triterpene glycosides produced by ginger and cell culture based on it] [Candidate dissertation ]. Vladivostok.

5. Nekora, S. V., & Komov, V. P. (2001). The ability of callusogenesis in explants of the needles of five species of the genus Taxus L. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta [Bulletin of the Volga State Technological University], 37(4), 100-107.

6. Orlovskaya, T.V. (2011). Farmakognosticheskoe issledovanie nekotoryh kul’tiviruemyh rastenij s cel’yu rasshireniya ih ispol’zovaniya v farmacii [Pharmacognostic study of some cultivated plants in order to expand their use in pharmacy] [Doctoral dissertation]. Stavropol Territory, Pyatigorsk.

7. Ravindran, P. N., & Nirmal B. (2004). Genus Zingiber. Lekarstvennye i aromaticheskie rasteniya promyshlennogo profilya [Medicinal and aromatic plants of industrial profile], 41, 573.

8. Urazbakhtin N. A. (2000). Osobennosti kul’tivirovaniya kletok rastenij semejstva tissovyh – producentov diterpenoida taksola [Features of the cultivation of plant cells of the yew-tree plants - producers of taxol diterpenoid] [Candidate dissertation]. Ufa.

9. Ahmad, B., Rehman, M. U., Amin, I., Arif, A., Rasool, S., Bhat, S. A., Afzal, I., Hussain, I., Bilal, S., & Mir, M. U. (2015). A Review on Pharmacological Properties of Zingerone (4-(4-Hydroxy-3-methoxyphenyl)-2-butanone). Scientific World Journal, 816364. https://doi.org/10.1155/2015/816364

10. Ali, AMA., El-Nour, M., El, A. M., & Yagi, S. M. (2016). Callus induction, direct and indirect organogenesis of ginger (Zingiber officinale Rosc). African Journal of Biotechnology, 15(38), 2106–2114. https://doi.org/10.5897/AJB2016.15540

11. Anasori, P., & Asghari, G. (2008). Effects of light and differentiation on gingerol and zingiberene production in callus culture of Zingiber officinale Rosc. Research in Pharmaceutical Sciences, 3(1), 59–63.

12. Bhattacharya S, Ghosh B, Choudhury M (2016). A Simple Reliable Protocol for Cytogentically Stable Mass Propagation of Ornithogalum virens Lindl. Plant Tissue Culture and Biotechnology, 26(1-4) https://doi.org/10.3329/ptcb.v26i1.29762

13. Charlwood, K. A., Brown S., & Charlwood, B. V. (1988). The accumulation of flavour compounds by cultivars of Zingiber officinale. AFRC Institute of Food Research,195–200.

14. Choi, S. K. (1991). Studies on clonal multiplication of ginger through in vitro cuttings. Research Reports of the Rural Development Administration, Biotechnology, 33(1), 33–39.

15. El-Nabarawy, M. A., El-Kafafi, S. H., Hamza, M. A., & Omar, M. A. (2014). The effect of some factors on stimulating the growth and production of active substances in Zingiber officinale callus cultures. Annals of Agricultural Sciences, 60, 1-9 https://doi.org/10.1016/j.aoas.2014.11.020

16. Guo, Y., & Zhang, Z. (2005). Establishment and plant regeneration of somatic embryogenic cell suspension cultures of the Zingiber officinale Rosc. Scientia Horticulturae, 107, 90–96. https://doi.org/10.1016/j.scienta.2005.07.003

17. Ilahi, I., & Jabeen, M. (1992). Tissue culture studies for micropropagation and extraction of essential oils from Zingiber officinale Rosc. Pakistan Journal of Botany, 24(1), 54-59.

18. Jalil, M., Annuar, M. S., Tan, B. C., & Khalid, N. (2015). Effects of selected physicochemical parameters on zerumbone production of Zingiber zerumbet Smith cell suspension culture. Evidence-Based Complementary and Alternative Medicine, 7. https://doi.org/10.1155/2015/757514

19. Jamil, M., Kim, J. K., Akram, Z., Ajmal, S. U., & Rha E. S. (2007). Regeneration of Ginger Plant from Callus Culture Through Organogenesis and Effect of CO2 Enrichment on the Differentiation of Regenerated Plant. Biotechnology, 6, 101–104. https://doi.org/10.3923/biotech.2007.101.104

20. Kacker, A., Bhat, S. R., Chandel, K. P. S., & Malik, S. K. (1993). Plant regeneration via somatic embryogenesis in ginger. Plant Cell Tissue and Organ Culture, 32(3), 289–292.

21. Kulkarni, D. D., Khuspe, S. S., & Mascarenhas, A. F. (1984). Isolation of Pythium tolerant ginger by tissue culture. In Placrosym VI (p.3–13).

22. Malamug, J .J .F., Inden, H., & Asahira, T. (1991). Plant regeneration and propagation from ginger callus. Scientia Horticulturae, 48(1–2), 89–99.

23. Nirmal, B. K., Samsudeen, K., & Ratnambal, M. J. (1992). In vitro plant regeneration from leafderived callus in ginger (Zingiber officinale Rosc). Plant Cell Tissue and Organ Culture, 29, 71–74.

24. Nirmal Babu, K. (1997). In vitro studies in ginger, Zingiber officinale Rosc. Unpublished Ph.D. Thesis, University of Calicut, Kerala, India, 3.

25. Pillai, S. K., & Kumar, N. B. (1982). Clonal multiplication of ginger in vitro. Indian Journal of Agricultural Sciences, 52(6), 397–399.

26. Sakamura F., & Suga T. (1989) Zingiber officinale Roscoe (Ginger): In Vitro Propagation and the Production of Volatile Constituents. In: Y.P.S. Bajaj (Ed.) Medicinal and Aromatic Plants II. Biotechnology in Agriculture and Forestry, 7. Springer. https://doi.org/10.1007/978-3-642-73617-9_29

27. Samsudeen, K. (1996). Studies on somaclonal variation produced by in vitro culture in Zingiber officinale Rosc. [Unpublished Ph.D. Thesis University of Calicut] Kerala, India.

28. Semwal, R. B., Semwal, D. K., Combrinck, S., & Viljoen, A. M. (2015). Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry, 117, 554–568. https://doi.org/10.1016/j.phytochem.2015.07.012

29. Ravindran, P. N., Nirmal Babu, K. (2004). Ginger: the genus Zingiber. Medicinal and aromatic plants – industrial profiles, 41, 573.

30. Yeoman, M. M. (1987). Bypassing the plant. Annals of Botany, 60, 175–188.


Review

For citations:


Ivanova L.A., Fomenko I.A., Fomenko V.V., Churmasova L.A., Shhennikova A.M. Obtaining a Cell Culture of Ginger. Health, Food & Biotechnology. 2019;1(4):92-104. (In Russ.) https://doi.org/10.36107/hfb.2019.i4.s280

Views: 473


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7648 (Online)