Creation of Low-Lactose Milk Serum using Bacterial β-Galactosidase
https://doi.org/10.36107/hfb.2019.i4.s282
Abstract
Today, there is a problem of processing waste of the dairy industry, in particular whey. Whey is a valuable protein-containing product, but no more than 30% of the volume of its generation in Russia goes into processing. This article presents the results of research on enzymatic processing of whey aimed at obtaining low-lactose dairy semi-finished product. The enzyme of bacterial nature - β-galactosidase with a standard activity of 5500 BLU/g was used in the research. The influence of pH in the range from 5.5 to 6.5, temperature in the range from 40 to 45 °C, amount of β-galactosidase introduced (0.01-0.07% of serum mass) and the duration of the process (from 3 to 24 hours) on the efficiency of whey hydrolysis was studied. It was found that at pH = 6.0; temperature of 40 °C and the duration of hydrolysis of 3 hours the dosage of β-galactosidase amounting to 0.05% provides optimal residual amount of lactose in serum equal to 0.6%. The maximum reduction of lactose in serum (the mass fraction of lactose was 0.1%) was also achieved at the following parameters: pH = 6.0; temperature 40 °C, duration 24 hours, the amount of enzyme 0.07%. But the hydrolysis at these parameters was considered irrational and economically inappropriate. Thus, optimal parameters for milk whey processing using bacterial β-galactosidase were determined. A low-lactose dairy semi-finished product was obtained, which is a promising raw material for functional and specialized food products intended for people suffering lactose intolerance.
About the Authors
Yu. V. KrasnovaRussian Federation
Yuliya V. Krasnova
1a, Bolshoy Udarniy pereulok, Serpukhov, 142210, Russian Federation
S. N. Butova
Russian Federation
Svetlana N. Butova
11 Volokolamskoe highway, Moscow, 125080, Russian Federation
E. R. Volnova
Russian Federation
Ekaterina R. Volnova
11 Volokolamskoe highway, Moscow, 125080, Russian Federation
Ju. V. Nikolaeva
Russian Federation
Julia V. Nikolaeva
11 Volokolamskoe highway, Moscow, 125080, Russian Federation
References
1. Arsen’eva, T. P. (2010).What lactase deficiency leads to. Molochnaya promyshlennost’ [Dairy industry], 7, 28-30.
2. Afanas’eva, M. M., & Shirokova, N. V. (2019). Lowlactic fermented milk product with vegetable filler. In Nauchnye osnovy sozdaniya i realizacii sovremennyh tekhnologij zdorov’esberezheniya [Scientific foundations for the creation and implementation of modern technologies for health conservation] (p.229-232).
3. Bednyh, B. S., & Evdokimov, I. A. (2015). Modeling of carbohydrate composition in baby food. Scientific and practical aspects. Molochnaya promyshlennost’ [Dairy industry], 9, 50-52.
4. Berketova, L. V. (2018). Development of low lactose products. In Zdorov’esberegayushchie tekhnologii v VUZe: sostoyanie i perspektivy [Healthy-saving technologies in university: state and prospects] (p.91-95).
5. Gavrilova, N. B., & Bortnikova, O. A. (2019). Prospects for the use of whey in the production technology of specialized dairy products. In Sostoyanie i perspektivy razvitiya nailuchshih dostupnyh tekhnologij specializirovannyh produktov pitaniya [State and development prospects of the best available technologies for specialized food products] (p.148-150).
6. Golubev, A. E., Ionova, I. I., & Mashkov V. V. (2019). The relevance of expanding low-lactic fermented milk drinks. Vestnik nauki [Herald of Science], 4(4), 137-141.
7. Dobriyan, E. I., & Zorov I. N. (2010). The main areas of application of β-galactosidase in the production of canned milk. In Perspektivnye biokatalizatory dlya pererabatyvayushchih otraslej APK [Promising biocatalysts for the processing industries of the agro-industrial complex] (p.354-359).
8. Kalinina, E. D., Gavrilov, A. V., & Filonov, R. A. (2015). Investigation of the influence of the mass fraction of β-galactosidase and the duration of the process on the hydrolysis of milk lactose. Izvestiya sel’skohozyajstvennoj nauki Tavridy [News of agricultural science of Tauris], 2 (165), 98-103.
9. Kisel’, A. A. (2019). Plant-based alternatives to milk – a growing segment of functional beverages. In Konkurentosposobnost’ territorij [Competitiveness of territories] (p.184-486).
10. Kozlov, S. G. (2008). Issledovanie i razrabotka tekhnologii syvorotochnyh geleobraznyh produktov s ispol’zovaniem rastitel’nogo syr’ya [Research and development of technology for whey gel products using plant materials] [Candidate dissertation] Kemerovo.
11. Kostenevich, A. A., & Sapunova, L. I.(2013). Bacterial β-galactosidases: biochemical and genetic diversity. Trudy BGU 2013 [Proceedings of BSU 2013], 8 (1), 52-63.
12. Krasnikova, L. V., Markelova, V. V., Verbickaya, N. B., & Dobrolezh, O. V . (2012). Functional whey products using antagonistically active strains of acidophilic lactobacilli. Izvestiya vysshih uchebnyh zavedenij. Pishchevaya tekhnologiya [News of higher educational institutions. Food technology], 1 (325), 41-43.
13. Kushugulova, A. R. (2010). Current issues of research and production of probiotic products. Biotekhnologiya. Teoriya i praktika [Biotechnology. Theory and practice], 2, 25-31.
14. Ostroumov, L. A., & Gavrilov, V. G. (2013). Biotransformation of lactose with β-galactosidase enzyme preparations. Tekhnika i tekhnologiya pishchevyh proizvodstv [Technique and technology of food production], 1, 1-5.
15. Porotova, E. YU., Hramicev, A. G., & Lodygin, A. D. (2015). The study of the patterns of enzymatic hydrolysis of lactose in secondary milk raw materials. Izvestiya sel’skohozyajstvennoj nauki Tavridy [News of agricultural science of Tauris], 3(166), 36-40.
16. Sapunova, L. I., & Kostenevich, A. A. (2014). Extracellular polysaccharides of the yeast fungus Cryptococcus flavescens - producer of β-galactosidase. Uspekhi medicinskoj mikologii [Advances in Medical Mycology], 12, 264-266.
17. Serba, E. M., Overchenko, M. B., Ignatova, N. I., Medrish, M. E., & Rimareva, L. V. (2018). Justification of the method for determining β-galactosidase activity of enzyme preparations. Vestnik rossijskoj sel’skohozyajstvennoj nauki [Bulletin of the Russian agricultural science], 6 , 65-68. https://doi.org/10.30850/vrsn/2018/6/65-68
18. Sudakova, O. A., Vijtiv, I.M., & Lasheb, S. L. (2017). Analysis of the market supply of infant formula in Moscow. Tverskoj medicinskij zhurnal [Tver Medical Journal], 1, 51-52.
19. Tihomirova, N. A. (2016). Low-lactose and lactose- free products for children and medical nutrition. Pererabotka moloka [Milk processing], 3(197), 16-23.
20. Chernyshova, K. S., Andreeva, A. A., & Kuznecova, D. S. (2016).Secondary lactase deficiency in the aspect of symbiotic digestion. In Molodezh’, Nauka, Medicina [Youth, Science, Medicine] 536-537.
21. Adiguzel, A., Nadaroglu, H., & Adiguzel, G. (2018). Purification and characterization of -mannanase from Bacillus pumilus (M27) and its applications in some fruit juices. Journal of Food Science and Technology-mysore, 52(8), 5292-5298. https://doi.org/10.1007/s13197-014-1609-y
22. Arnold, J. W., Simpson, J. B., Roach, J., Bruno- Barcena, J. M., & Azcarate-Peril, M. A. (2018). Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients, 10(157), https://doi.org/10.3390/nu10101517
23. Bosso, A., Setti, A. C. I ., Tomal, A. B., Guemra, S., Morioka, L. R. I., & Suguimoto, H. H. (2019). Substrate consumption and beta-galactosidase production by Saccharomyces fragilis IZ 275 grown in cheese whey as a function of cell growth rate. Biocatalysis and agricultural biotechnology, 21, UNSP 101335. https://doi.org/10.1016/j.bcab.2019.101335
24. Juajin, O., Nguen, Thu-Ha, Maischberger, T., Iqbal, S., Haltrich, P., & Yamabhai, M. (2011). Cloning, purification, and characterizationof β-galactosidase from Bacillus licheniformis DSM 13. Biotechnologically Relevant Enzymes and Proteins, 89, 645-654. https://doi.org/10.1007/s00253-010-2862-2
25. Kim, S., Huang, E., Park, S., Holzapfel, W., & Lim, S. D. (2018). Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum K10. Korean Journal for Food Science of Animal resources, 38(3), 554-569. https://doi.org/10.5851 /kosfa.2018.38.3.554
26. Lapides, R. A., & Savaiano, D. A. (2018). Gender, Age, Race and Lactose Intolerance: Is There Evidence to Support a Differential Symptom Response? A Scoping Review. Nutrients, 10(12). 1956. https://doi.org/10.3390/nu10121956
27. Liu, P., Xie, J. X., Liu, J. H., & Ouyang, J. (2019). A novel thermostable beta-galactosidase from Bacillus coagulans with excellent hydrolysis ability for lactose in whey. Journal of Dairy Science, 102(11), 9740-9748. https://doi.org/10.3168/jds.2019-16654
28. Mano, M. C. R., Paulino, B. N., & Pastore, G. M. (2019). Whey permeate as the raw material in galacto-oligosaccharide synthesis using commercial enzymes. Food Research International, 124, 78-85. https://doi.org/10.1016/j.foodres.2018.09.019
29. Szilagyi, A., & Ishayek, N. (2018). Lactose Intolerance, Dairy Avoidance, and Treatment Options. Nutrients, 10(12), 1994. https://doi.org/10.3390/nu10121994
30. Thum, C., Weinborn, V., Barile, D., McNabb, W. C., Roy, N. C., & Bell, J. M. L. N. D. (2019). Understanding the Effects of Lactose Hydrolysis Modeling on the Main Oligosaccharides in Goat Milk Whey Permeate. Molecules, 24(18), 3294. https://doi.org/10.3390/molecules24183294
31. Zheng, X., Chu, H., Cong, Y., Deng, Y., Long, Y., Zhu, Y., Pohl, D., Fried, M., Dai, N., & Fox, M. (2015). Self-reported lactose intolerance in clinic patients with functional gastrointestinal symptoms: prevalence, risk factors, and impact on food choices. Neurogastroenterology and Motility, 27(8), 1138-1146. https://doi.org/10.1111/nmo.12602
Review
For citations:
Krasnova Yu.V., Butova S.N., Volnova E.R., Nikolaeva J.V. Creation of Low-Lactose Milk Serum using Bacterial β-Galactosidase. Health, Food & Biotechnology. 2019;1(4):105-113. (In Russ.) https://doi.org/10.36107/hfb.2019.i4.s282