Study of the Content of Antioxidant Substances in Fruit and Vegetable Raw Materials of the Samara Region
https://doi.org/10.36107/hfb.2021.i3.s111
Abstract
Fruit, berry and vegetable raw materials are an irreplaceable item in human nutrition. At this stage in the development of world breeding, not only the organoleptic characteristics of plants, but also their chemical composition, come to the fore. In connection with the growing interest in the effect of antioxidants on human health, breeders are increasingly turning their attention to the study of their comparative content in fruit, berry and vegetable raw materials. The results of a study of the influence of the grade of plant raw materials on the accumulation of substances exhibiting antioxidant activity (phenols, flavonoids, carotenoids) are presented. Popular vegetables and fruits cultivated and growing wild in the Samara region were selected as objects of research. The aim of the study is to obtain new information on the influence of such factors as the type and variety of fruit, berry and vegetable raw materials on substances with antioxidant activity (phenols, flavonoids, carotenoids). In the extracts of the analyzed samples, the total content of phenolic substances was determined by the method using the Folin-Ciocalteu reagent, flavonoids by the method based on the formation of a flavonoid-aluminum complex. The carotene content was determined according to GOST 8756.22-80 using acetone and hexane as extractants. The results of the study showed that the type and variety of plant raw materials are factors that directly affect the accumulation of the studied substances. To a greater extent, the results obtained relate to varieties of sweet peppers, fresh food pumpkin, rose hips. Significant variation in carotene content was recorded in pumpkin samples: from 1.20 to 4.90 mg%. Among the objects of research, it is recommended to use the fruits of the wild rose as a source of phenolic substances and carotenoids for the food and pharmaceutical industries. The work was carried out within the framework of the state assignment for fundamental research of the Federal State Budgetary Educational Institution of Higher Education «Samara State Technical University» No. 0778-2020-0005.
Keywords
About the Authors
Sofia A. AleksashinaRussian Federation
Nadezhda V. Makarova
Russian Federation
References
1. Загорулько, Е. Ю, Ожигова, М. Г., Чемесова, И. И., & Лужанин, В. Г. (2018). Количественное определение суммы флавоноидов в надземной части и настойке IRIS LACTEA (IRIDACEAE. Химия растительного сырья, 2, 105-113. https://www.10.14258/jcprm.2018023368
2. Зверев, Я. Ф. (2017). Антитромбоцитарная активность флавоноидов. Вопросы питания, 6, 6-20. https://www.10.24411/0042-8833-2017-00001
3. Зверев, Я. Ф. (2019). Противоопухолевая активность флавоноидов. Бюллетень сибирской медицины, 18, 181–194. https://www.10.20538/1682-0363-2019-2-181–194
4. Земцова, А. Я., Зубарев, Ю. А., & Гунин, А. В. (2019). Токоферолы плодовой мякоти четырех подвидов облепихи (Hippophae Rhamnoides L) в условиях лесостепи Алтайского края. Химия растительного сырья, 1, 147-155. https://www.32036258/lerto0223;236258
5. Потоцкая, И. В., Шаманин, В. П., Шепелев, С. С., Пожерукова, В. Е., & Моргунов, А. И. (2020). Фенотипическая и генотипическая оценка линий гексаплоидной синтетической пшеницы (AABBDD) по параметрам зерновки в условиях западной Сибири. Сельскохозяйственная биология, 1, 15-26. https://www.10.15389/agrobiology.2020.1.15rus
6. Серба, Е. М., Волкова, Г. С., Соколова, Е. Н., Фурсова, Н. А., & Юраскина, Т. В. (2018). Плоды брусники – перспективный источник биологически активных веществ. Химия растительного сырья, 4, 48-58. https://www. doi.org/10.36107/spfp.2018.59
7. Типсина, Н. Н., & Селезнева, Г. К. (2013). Использование пюре из тыквы в пищевой промышленности. Вестник КрасГАУ, 12, 242-247
8. Чумаков, М. И., Гусев, Ю. С., Богатырева, Н. В., & Соколов, А. Ю. (2019). Оценка рисков распространения генетически модифицированной кукурузы с пыльцой при выращивании с нетрансформированными сортами. Сельскохозяйственная биология, 3, 426-445. https://www. doi: 10.15389/agrobiology.2019.3.426rus
9. Anders, S., Cowling, W., Pareek, A., Gupta, K. J., Singla-Pareek, S. L., & Foyer, C. H. (2021). Gaining Acceptance of Novel Plant Breeding Technologies. Trends in Plant Science, 26, 575-587. https://doi.org/10.1016/j.tplants.2021.03.004
10. Arruda, H. S., Neri-Numa, I. A., Kido, L. A., Júnior, M. R. M., & Pastore, G. M. (2020). Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. Journal of Functional Foods, 75, 104-203. https://doi.org/10.1016/j.jff.2020.104203
11. Bhatta, M., Sandro, P., Smith, M. R., Delaney, O., Voss-Fels, K. P., Gutierrez, L., & Hickey, L. T. (2021). Need for speed: manipulating plant growth to accelerate breeding cycles. Current Opinion in Plant Biology, 60, 101-986. https://doi.org/10.1016/j.pbi.2020.101986
12. Cömert, E. D., Mogol, B. A., & Gökmen, V. (2020). Relationship between color and antioxidant capacity of fruits and vegetables. Current Research in Food Science, 2, 1-10. https://doi.org/10.1016/j.crfs.2019.11.001
13. Dong, R., Su, J., Nian, H., Shen, H., Zhai, X., Xin, H., Qin, L., & Han, T. (2017). Chemical fingerprint and quantitative analysis of flavonoids for quality control of Sea buckthorn leaves by HPLC and UHPLC-ESI-QTOF-MS. Journal of Agricultural and Food Chemistry, 37, 513-522. https://doi.org/10.1016/j.jff.2017.08.019
14. Du, W., Avena-Bustillos, R. J., & Breksa, A. P. (2012). Effect of UV-B light and different cutting styles on antioxidant enhancement of commercial fresh-cut carrot products. Food Chemistry, 4, 1862-1869. https://doi.org/10.1016/j.foodchem.2012.03.097
15. Enfissi, E. M.A., Drapal, M., Perez-Fons, L., Nogueira, M., Berry, H. M., Almeida, J., & Fraser, P. D. (2021). New plant breeding techniques and their regulatory implications: An opportunity to advance metabolomics approaches. Journal of Plant Physiology, 258, 153-378. https://doi.org/10.1016/j.jplph.2021.153378
16. Ghasemnezhad, M., Sherafati, M., & Payvast, G.A. (2011). Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. Journal Functional Foods, 3, 44-49. https://doi.org/10.1016/j.jff.2011.02.002
17. Guo, R., Guo, X., Li, T., Fu, X., & Liu, R. H. (2017). Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chemistry, 227, 997-1003. https://doi.org/10.1016/j.foodchem.2016.11.063
18. Jashari, G., Muriqi, S., Arbneshi, T., Metelka, R., Švancara, I., & Sýs, M. (2021). A new voltammetric approach for the determination of β-carotene in vegetables and pharmaceutical capsules using a gold electrode. Talanta, 227, 1-7. https://doi.org/10.1016/j.talanta.2021.122088
19. Kaisera, N., Douchesa, D., Dhingra, A., Glenn, K. C., ReedHerzig, P., Stowe, E. C., & Swarup S. (2020). The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends in Food Science and Technology, 100, 51-66. https://doi.org/10.1016/j.tifs.2020.03.042
20. Korkmaz, M., & Dogan, N. Y. (2018). Analysis of Genetic Relationships Between Wild Roses (Rosa L. Spp.) Growing in Turkey. Food Chemistry, 60, 305-310. https://doi: 10.18699/VJ20.639.
21. Lintig, J., Moon, J., Lee, J., & Ramkumar, S. (2019). Carotenoid metabolism at the intestinal barrier. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1-21. https:// doi.org/10.1016/j.bbalip.2019.158580.
22. Li, L., Li, G., Sun, J., Xin, M., Yi, P., He, X., Sheng, J., Zhou, Z., Ling, D., Zheng, F., Li, J., Liu G., Li, Z., Tang, Ya., Yang, Yi., & Tang, J. (2021). Synergistic effects of ultraviolet light irradiation and high-oxygen modified atmosphere packaging on physiological quality, microbial growth and lignification metabolism of fresh-cut carrots. Postharvest Biology and Technology, 173, 111-365.
23. Pantelic, M. M., Zagorac, D. C., Davidovic, S. M., Todić, S. R., Bešlić, Z. S., Gašić, U. M., Tešić, Z. L., & Natić, M. M. (2016). Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chemistry, 211, 243-252. https:// doi.org/10.1016/j.foodchem.2016.05.051
24. Rowles, J. L., & Erdman, J. W. (2020). Carotenoids and their role in cancer prevention. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1-9. https:// doi.org/10.1016/j.bbalip.2020.158613
25. Saricaoglu, F. Т. (2019). Application of multi pass high pressure homogenization to improve stability, physical and bioactive properties of rosehip (Rosacanina L.) nectar. Food Chemistry, 1, 67-75.
26. Wan, Y., Zhu, J., Meng, X., Liu, S., Mu. J., Ning C. Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts. (2016). Food Chemistry, 197, 522-529. https://doi.org/10.1016/j.foodchem.2015.11.006
Supplementary files
![]() |
1. первая страница | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(14KB)
|
Indexing metadata ▾ |
|
2. Экспертное заключение 2 | |
Subject | Экспертное заключение 2 | |
Type | Other | |
View
(514KB)
|
Indexing metadata ▾ |
Review
For citations:
Aleksashina S.A., Makarova N.V. Study of the Content of Antioxidant Substances in Fruit and Vegetable Raw Materials of the Samara Region. Health, Food & Biotechnology. 2021;3(3). (In Russ.) https://doi.org/10.36107/hfb.2021.i3.s111