Улучшение технологических свойств продовольственного зерна за счет использования современных технологий: Обзор предметного поля
https://doi.org/10.36107/hfb.2024.i1.s204
Аннотация
Введение. За последние десятилетия значительно вырос интерес научного сообщества к современным технологиям термической и нетермической обработки. Снижение времени обработки и отрицательного влияния на качество продукта позволяет рассматривать данные технологии в качестве эффективной альтернативы традиционной термическим методам. Технологические свойства зерновых продуктов включает в себя многие важные свойства, которые играют значительную роль для выбора продукта потребителем.
Цель статьи провести критический анализ, систематизацию и обобщение результатов научных исследований фундаментальных принципов и преимуществ технологий термической и нетермической обработки и их влиянию на технологические свойства продовольственного зерна.
Материалы и методы: В обзор включены зарубежные статьи опубликованные на английском языке за период 2015- 2024 год. Поиск зарубежной научной литературы на английском языке по данной теме проводили в библиографических базах Scopus, Web of Science, Elsevier и Google Scholar. Материалами для исследования послужили 143 статьи. При отборе публикаций для обзора приоритет отдавали высокоцитируемым источникам.
Результаты. Современные нетермические и термические методы являются экологичной и эффективной альтернативой традиционной химической и термической обработке продовольственного зерна. Обзор результатов научных исследований показал, что помимо безопасности и качества пищевых продуктов, использование новых технологий в большинстве случаев положительно коррелирует с качеством продовольственного зерна. Обработка ультразвуком приводит к разрыву внутренних водородных связей между молекулами белка, тем самым ослабляя их третичную и четвертичную структуры. Кроме того, обработка ультразвуком усиливает гидролиз крахмала и снижает его вязкость. Обработка импульсным электрическим полем может вызывать конфигурационные и молекулярные изменения в биомакромолекулах сырья. В результате радиочастотного нагрева происходит увеличение набухания гранул, что приводит к незначительной желатинизации и ретроградации крахмала, одновременно снижая стабильность крахмального теста. Микроволновой нагрев приводит к образованию плотных и более однородных пор и структур внутри образца, тем самым способствуя образованию сетки гидратного геля крахмала. Вместе с тем, в процессе использования современных технологий обработки зерна существуют нерешенные проблемы. Различие в конструкции оборудования, режимах, условиях эксплуатации не позволяет в полной мере провести оценку влияния этих методов на консистенцию пищевого зерна.
Выводы. С целью максимального использования преимуществ современных нетермических и термических технологий необходимы углубленные исследования их влияния на текстурные свойства различных видов зерновых и бобовых культур, обеспечив при этом подбор и разработку параметров обработки для каждого вида продовольственного зерна. Результаты данного обзора могут представлять интерес для дальнейших научных исследований, а также для специалистов пищевой промышленности с целью внедрения этих передовых технологий. Промышленное внедрение современных технологий может стать эффективной альтернативой традиционным методам обработки зерновых и бобовых культур.
Об авторах
Леонид Чеславович БуракБеларусь
Александр Николаевич Сапач
Беларусь
Список литературы
1. Adebowale, O. J., Taylor, J. R. N., & de Kock, H. L. (2020). Stabilization of wholegrain sorghum flour and consequent potential improvement of food product sensory quality by microwave treatment of the kernels. LWT-Food Science and Technology, 132, 109827. https://doi.org/10.1016/J.LWT.2020.109827
2. Alpos, M., Leong, S. Y., Liesaputra, V., & Oey, I. (2022). Influence of pulsed electric fields (PEF) with calcium addition on the texture profile of cooked black beans (Phaseolus vulgaris) and their particle breakdown during in vivo oral processing. Innovative Food Science & Emerging Technologies, 75, 102892. https://doi.org/10. 1016/J.IFSET.2021.102892
3. An, N. N., Sun, W. H., Li, B. Z., Wang, Y., Shang, N., Lv, W. Q., Li, D., & Wang, L. J. (2022). Effect of different drying techniques on drying kinetics, nutritional components, antioxidant capacity, physical properties and microstructure of edamame. Food Chemistry, 373, 131412. https://doi.org/10.1016/J.FOODCHEM.2021.131412
4. Andreou, V., Sigala, A., Limnaios, A., Dimopoulos, G., & Taoukis, P. (2021). Effect of pulsed electric field treatment on the kinetics of rehydration, textural properties, and the extraction of intracellular compounds of dried chickpeas. Journal of Food Science, 86(6), 2539–2552. https://doi.org/10.1111/1750-3841.15768
5. Areesirisuk, A., Wanlapa, A., Teeka, J., Kaewpa, D., & Chiu, C. H. (2023). Potential of infrared drying and cell-protective agent efficiency on survival of Lactobacillus plantarum probiotic in fermented soybean meal. Biocatalysis and Agricultural Biotechnology, 53, 102843. https://doi.org/10.1016/J.BCAB.2023.102843
6. Aslam, R., Alam, M. S., Kaur, J., Panayampadan, A. S., Dar, O. I., Kothakota, A., & Pandiselvam, R. (2022). Understanding the effects of ultrasound processing on texture and rheological properties of food. Journal of Texture Studies, 53(6), 775–799. https:// doi.org/10.1111/JTXS.12644
7. Aslam, R., Alam, M. S., Singh, S., & Kumar, S. (2021). Aqueous ozone sanitization of whole peeled onion: Process optimization and evaluation of keeping quality during refrigerated storage. LWT-Food Science and Technology, 151, 112183. https://doi.org/10.1016/J.LWT.2021.112183
8. Astráin-Redín, L., Alejandre, M., Raso, J., Cebrián, G., & Álvarez, I. (2021). Direct contact ultrasound in food processing: Impact on food quality. Frontiers in Nutrition, 8, 633070. https://doi.org/10.3389/FNUT.2021.633070
9. Bagheri, H., Kashaninejad, M., Ziaiifar, A. M., & Aalami, M. (2019). Textural, color and sensory attributes of peanut kernels as affected by infrared roasting method. Information Processing in Agriculture, 6(2), 255–264. https://doi.org/10.1016/J.INPA.2018.11.001
10. Bahrami, N., Bayliss, D., Chope, G., Penson, S., Perehinec, T., & Fisk, I. D. (2016). Cold plasma: A new technology to modify wheat flour functionality. Food Chemistry, 202, 247–253. https://doi.org/10.1016/J.FOODCHEM.2016.01.113
11. Bai, T. G., Zhang, L., Qian, J. Y., Jiang, W., Wu, M., Rao, S. Q., Li, Q., Zhang, C., & Wu, C. (2021). Pulsed electric field pretreatment modifying digestion, texture, structure and flavor of rice. LWT- Food Science and Technology, 138, 110650. https://doi.org/10.1016/ J.LWT.2020.110650
12. Barbhuiya, R. I., Singha, P., & Singh, S. K. (2021). A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Research International, 149, 110647. https://doi.org/10.1016/j.foodres.2021.110647
13. Barman, D., & Dkhar, M. S. (2015). Amylolytic activity and its parametric optimization of an endophytic bacterium Bacillus subtilis with an ethno-medicinal origin. Biologia, 70(3), 283–293. https:// doi.org/10.1515/BIOLOG-2015-0047/METRICS
14. Bassey, E. J., Cheng, J. H., & Sun, D. W. (2022). Improving drying kinetics, physicochemical properties and bioactive compounds of red dragon fruit (Hylocereus species) by novel infrared drying. Food Chemistry, 375, 131886. https://doi.org/10.1016/J. FOODCHEM.2021.131886
15. Boateng, I. D. (2022). Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, structure, and drying performance. Critical Reviews in Food Science and Nutrition, 1–35. https://doi.org/10.1080/10408398.2022.2140121
16. Bonto, A. P., Tiozon, R. N., Sreenivasulu, N., & Camacho, D. H. (2021). Impact of ultrasonic treatment on rice starch and grain functional properties: A review. Ultrasonics Sonochemistry, 71, 105383. https://doi.org/10.1016/J.ULTSONCH.2020.105383
17. Bruce, R. M., Atungulu, G. G., Sadaka, S., & Mauromoustakos, A. (2022). Aging characteristics of rice dried using microwave at 915 MHz frequency. Cereal Chemistry, 99(6), 1218–1233. https://doi.org/10.1002/CCHE.10584
18. Burak, L. Ch., & Sapach A.N. (2023) The influence of pre-treatment with a pulsed electric field on the drying process: Scoping review. Storage and processing of Farm Products, (2), 44-71. https://doi.org/10.36107/spfp.2023.418
19. Cao, G., Chen, X., Hu, B., Yang, Z., Wang, M., Song, S., Wang, L., & Wen, C. (2023). Effect of ultrasound-assisted resting on the qual- ity of surimi-wheat dough and noodles. Ultrasonics Sonochemistry, 94, 106322. https://doi.org/10.1016/J.ULTSONCH.2023.106322
20. Cao, H., Sun, R., Liu, Y., Wang, X., Guan, X., Huang, K., & Zhang, Y. (2022). Appropriate microwave improved the texture properties of quinoa due to starch gelatinization from the destructed cyptomere structure. Food Chemistry: X, 14, 100347. https://doi.org/10.1016/J.FOCHX.2022.100347
21. Carullo, D., Abera, B. D., Scognamiglio, M., Donsì, F., Ferrari, G., & Pataro, G. (2022). Application of pulsed electric fields and high-pressure homogenization in biorefinery cascade of C.vulgaris microalgae. Foods, 11(3), 471. https://doi.org/10.3390/ FOODS11030471
22. Castillo-Gironés, S., Masztalerz, K., Lech, K., Issa-Issa, H., Figiel, A., & Carbonell-Barrachina, A. A. (2021). Impact of osmotic dehydration and different drying methods on the texture and sensory characteristic of sweet corn kernels. Journal of Food Processing and Preservation, 45(4), e15383. https://doi.org/10.1111/JFPP.15383
23. Chen, G., Dong, S., Zhao, S., Li, S., & Chen, Y. (2019). Improving functional properties of zein film via compositing with chitosan and cold plasma treatment. Industrial Crops and Products, 129, 318–326. https://doi.org/10.1016/J.INDCROP.2018.11.072
24. Chen, Y., Zhang, Y., Jiang, L., Chen, G., Yu, J., Li, S., & Chen, Y. (2020). Moisture molecule migration and quality changes of fresh wet noodles dehydrated by cold plasma treatment. Food Chemistry, 328, 127053. https://doi.org/10.1016/J.FOODCHEM.2020.127053
25. Chhanwal, N., Bhushette, P. R., & Anandharamakrishnan, C. (2019). Current perspectives on non-conventional heating ovens for baking process—A review. Food and Bioprocess Technology, 12(1), 1–15. https://doi.org/10.1007/S11947-018-2198-Y/METRICS
26. Chitsuthipakorn, K., & Thanapornpoonpong, S. (2023). Verification of rice quality during storage after drying with hot air and radio frequency heating. Food Chemistry: X, 20, 100882. https://doi.org/ 10.1016/J.FOCHX.2023.100882
27. Chung, H. J., Cho, D. W., Park, J. D., Kweon, D. K., & Lim, S. T. (2012). In vitro starch digestibility and pasting properties of germinated brown rice after hydrothermal treatments. Journal of Cereal Science, 56(2), 451–456. https://doi.org/10.1016/J.JCS.2012.03.010
28. Di Rosa, D. A. R., Bressan, F., Leone, F., Falqui, L., & Chiofalo, V. (2019). Radio frequency heating on food of animal origin: A review. European Food Research and Technology, 245(9), 1787–1797. https://doi.org/10.1007/S00217-019-03319-8/METRICS
29. Dang, B., Zhang, W. G., Zhang, J., Yang, X. J., & Xu, H. D. (2022). Effect of thermal treatment on the internal structure, physicochemical properties and storage stability of whole grain highland barley flour. Foods, 11(14), 2021. https://doi.org/10.3390/FOODS11142021
30. Degon, J. G., Zheng, C., Elkhedir, A., Yang, B., Zhou, Q., & Li, W. (2021). Effect of microwave pre-treatment on physical quality, bioactive compounds, safety risk factor, and storage stability of peanut butter. Oil Crop Science, 6(3), 137–144. https://doi.org/10. 1016/J.OCSCI.2021.07.006
31. De Pilli, T., & Alessandrino, O. (2018). Effects of different cooking technologies on biopolymers modifications of cereal-based foods: Impact on nutritional and quality characteristics review. Critical Reviews in Food Science and Nutrition, 60(4), 556–565. https://doi.org/10.1080/10408398.2018.1544884
32. Devraj, L., Natarajan, V., Vadakkeppulpara Ramachandran, S., Manicakam, L., & Sarvanan, S. (2020). Influence of microwave heating as accelerated aging on physicochemical, texture, pasting properties, and microstructure in brown rice of selected Indian rice varieties. Journal of Texture Studies, 51(4), 663–679. https://doi. org/10.1111/JTXS.12522
33. Ding, C., Chang, L., Luo, Y., Tao, T., Atungulu, G. G., Ding, H., Huang, L., Simelane, M. B., Zhao, S., & Liu, Q. (2023). Influence of cooking and texture attributes of far infrared radiated Japonica rice during storage. Journal of Cereal Science, 112, 103710. https://doi.org/10.1016/J.JCS.2023.103710
34. Ding, J., Hou, G. G., Dong, M., Xiong, S., Zhao, S., & Feng, H. (2018). Physicochemical properties of germinated dehulled rice flour and energy requirement in germination as affected by ultrasound treatment. Ultrasonics Sonochemistry, 41, 484–491. https://doi.org/10.1016/J.ULTSONCH.2017.10.010
35. Ding, T., Cullen, P. J., & Yan, W. (2022). Applications of cold plasma in food safety. In Applications of cold plasma in food safety. Springer. https://doi.org/10.1007/978-981-16-1827-7/COVER
36. Duque, S. M. M., Leong, S. Y., Agyei, D., Singh, J., Larsen, N., Sutton, K., & Oey, I. (2022). Understanding the mechanism of how pulsed electric fields treatment affects the digestibility and characteristics of starch in oat flour. Applied Sciences, 12(20), 10293. https://doi. org/10.3390/APP122010293
37. Flores-Silva, P. C., Roldan-Cruz, C. A., Chavez-Esquivel, G., Vernon-Carter, E. J., Bello-Perez, L. A., & Alvarez-Ramirez, J. (2017). In vitro digestibility of ultrasound-treated corn starch. Starch—Stärke, 69(9–10), 1700040. https://doi.org/10.1002/STAR.201700040
38. Gao, J., Wu, M., Du, S., Zhang, H., Wang, S., & Ling, B. (2023). Recent advances in food processing by radio frequency heating techniques: A review of equipment aspects. Journal of Food Engineering, 357, 111609. https://doi.org/10.1016/J.JFOODENG.2023.111609
39. Gebremical, G. G., Emire, S. A., & Berhanu, T. (2019). Effects of multihollow surface dielectric barrier discharge plasma on chemical and antioxidant properties of peanut. Journal of Food Quality, 2019, 1–10. https://doi.org/10.1155/2019/3702649
40. Geng, D. H., Lin, Z., Liu, L., Qin, W., Wang, A., Wang, F., & Tong, L. T. (2021). Effects of ultrasound-assisted cellulase enzymatic treatment on the textural properties and in vitro starch digestibility of brown rice noodles. LWT-Food Science and Technology, 146, 111543. https://doi.org/10.1016/J.LWT.2021.111543
41. Golani, R., Leishangthem, C., Xiao, H., Zhang, Q., & Sutar, P. P. (2023). Effect of high temperature short time infrared roasting of peanuts. Journal of Future Foods, 4(2), 173–178. https://doi.org/10.1016/J.JFUTFO.2023.06.009
42. Gong, X., Chen, Z., Hu, J. J., & Liu, C. (2022). Advances of electroporation-related therapies and the synergy with immunotherapy in cancer treatment. Vaccines, 10(11), 1942. https://doi.org/10.3390/VACCINES10111942
43. Guiyun, C., Yushan, W., Mingyue, Z., Wanxing, M., Xixian, X., & Ye, C. (2022). Cold atmospheric plasma treatment improves the γ-aminobutyric acid content of buckwheat seeds providing a new anti-hypertensive functional ingredient. Food Chemistry, 388, 133064. https://doi.org/10.1016/J.FOODCHEM.2022.133064
44. Hassan, A. B., von Hoersten, D., & Mohamed Ahmed, I. A. (2019). Effect of radio frequency heat treatment on protein profile and functional properties of maize grain. Food Chemistry, 271, 142–147. https://doi.org/10.1016/J.FOODCHEM.2018.07.190
45. Homayoonfal, M., & Malekjani, N. (2023). Drying of cereal grains and beans. In Drying technology in food processing (pp. 459–489). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819895- 7.00009-2
46. Hong, J., An, D., Liu, C., Li, L., Han, Z., Guan, E., Xu, B., Zheng, X., & Bian, K. (2020). Rheological, textural, and digestible properties of fresh noodles: Influence of starch esterified by conventional and pulsed electric field-assisted dual technique with full range of amy- lose content. Journal of Food Processing and Preservation, 44(8), e14567. https://doi.org/10.1111/JFPP.14567
47. Huang, W., Song, E., Lee, D., Seo, S., Lee, J., Jeong, J., Chang, Y. H., Lee, Y. M., & Hwang, J. (2021). Characteristics of functional brown rice prepared by parboiling and microwave drying. Journal of Stored Products Research, 92, 101796. https://doi.org/10.1016/J.JSPR.2021.101796
48. International Grain Council (IGC). (2023). https://www.igc.int/en/ default.aspx
49. Jarén, C., López, A., & Arazuri, S. (2016). Advanced analytical techniques for quality evaluation of potato and its products. In Advances in potato chemistry and technology (pp. 563–602). Academic Press. https://doi.org/10.1016/B978-0-12-800002-1.00019-4
50. Ji, W., Li, M., Yang, T., Li, H., Li, W., Wang, J., & Ma, M. (2022). Effect of cold plasma on physical–biochemical properties and nutritional components of soybean sprouts. Food Research International, 161, 111766. https://doi.org/10.1016/J.FOODRES.2022.111766
51. Ji, X., Xiong, Y. L., & Jiang, J. (2023). Tunable rice protein–starch composite soft gels: Structural role of ultrasound-modified protein. Food Hydrocolloids, 148, 109462. https://doi.org/10.1016/J.FOODHYD.2023.109462
52. Jiao, Y., Tang, J., Wang, Y., & Koral, T. L. (2018). Radio-frequency applications for food processing and safety. Annual Review of Food Science and Technology, 9, 105–127. https://doi.org/10.1146/ANNUREV-FOOD-041715-033038
53. Jimoh, K. A., Hashim, N., Shamsudin, R., Man, H. C., Jahari, M., & Onwude, D. I. (2023). Recent advances in the drying process of grains. Food Engineering Reviews, 15(3), 548–576. https://doi.org/10.1007/S12393-023-09333-7/FIGURES/1
54. Juodeikiene, G., Zadeike, D., Trakselyte-Rupsiene, K., Gasauskaite, K., Bartkiene, E., Lele, V., Viskelis, P., Bernatoniene, J., Ivanauskas, L., & Jakstas, V. (2020). Functionalisa- tion of flaxseed proteins assisted by ultrasonication to produce coatings enriched with raspberries phytochem- icals. LWT-Food Science and Technology, 124, 109180. https://doi.org/10.1016/J.LWT.2020.109180
55. Kariman, M., Tabarsa, F., Zamani, S., Kashi, P. A., & Torshizi, M. V. (2019). Classification of the energy and exergy of microwave dryers in drying kiwi using artificial neural networks. Carpathian Journal of Food Science and Technology, 11(2), 29–45.
56. Kong, X. (2019). Starches modified by nonconventional techniques and food applications. In Starches for food application: Chemical, technological and health properties (pp. 271–295). Academic Press. https://doi.org/10.1016/B978-0-12-809440-2.00007-1
57. Kutlu, N., Pandiselvam, R., Saka, I., Kamiloglu, A., Sahni, P., & Kothakota, A. (2022). Impact of different microwave treatments on food texture. Journal of Texture Studies, 53(6), 709–736. https://doi. org/10.1111/JTXS.12635
58. Lara, L. M., Wilson, S. A., Chen, P., & Atungulu, G. G. (2019). The effects of infrared treatment on physicochemical characteristics of vegetable soybean. Heliyon, 5(1), e01148. https://doi.org/10.1016/J.HELIYON.2019.E01148
59. Lee, C. M., & Resurreccion, A. V. A. (2006). Predicting sensory attribute intensities and consumer acceptance of stored roasted peanuts using instrumental measurements. Journal of Food Qual- ity, 29(4), 319–338. https://doi.org/10.1111/J.1745-4557.2006.00076.X
60. Li, A., Guo, Z., Wang, Z., Yang, Q., Wen, L., Xiang, X., & Kan, J. (2023). Effect of multiple-frequency ultrasound-assisted transglutaminase dual modification on the structural, functional characteristics and application of Qingke protein. Ultrasonics Sonochemistry, 94, 106317. https://doi.org/10.1016/J.ULTSONCH.2023.106317
61. Li, M., Wang, B., Lv, W., Lin, R., & Zhao, D. (2022). Characterization of pre-gelatinized kidney bean (Phaseolus vulgaris L.) produced using microwave hot-air flow rolling drying technique. LWT-Food Science and Technology, 154, 112673. https://doi.org/10.1016/J.LWT.2021.112673
62. Li, Q., Wu, Q. Y., Jiang, W., Qian, J. Y., Zhang, L., Wu, M., Rao, S. Q., & Wu, C. S. (2019). Effect of pulsed electric field on structural properties and digestibility of starches with different crystalline type in solid state. Carbohydrate Polymers, 207, 362–370. https://doi.org/10.1016/J.CARBPOL.2018.12.001
63. Li, Y., Wang, J. H., Han, Y., Yue, F. H., Zeng, X. A., Chen, B. R., Zeng, M. Q., Woo, M. W., & Han, Z. (2023). The effects of pulsed electric fields treatment on the structure and physicochemical properties of dialdehyde starch. Food Chemistry, 408, 135231. https://doi.org/10.1016/J.FOODCHEM.2022.135231
64. Li, Y., Wang, S., Liu, X., Zhao, G., Yang, L., Zhu, L., & Liu, H. (2023). Improvement in texture and color of soy protein isolate gel containing capsorubin and carotenoid emulsions following microwave heating. Food Chemistry, 428, 136743.
65. Li, Y., Zhang, Y., Liu, X., Wang, H., & Zhang, H. (2019). Effect of ultrasound-assisted freezing on the textural characteristics of dough and the structural characterization of wheat gluten. Journal of Food Science and Technology, 56(7), 3380–3390. https://doi.org/10.1007/S13197-019-03822-6/METRICS
66. Lian, F., Sun, D. W., Cheng, J. H., & Ma, J. (2022). Improving modifi- cation of structures and functionalities of food macromolecules by novel thermal technologies. Trends in Food Science & Technology, 129, 327–338. https://doi.org/10.1016/J.TIFS.2022.10.001
67. Liang, Y., Teng, F., He, M., Jiang, L., Yu, J., Wang, X., Li, Y., & Wang, Z. (2021). Effects of ultrasonic treatment on the structure and rehydration peculiarity of freeze-dried soy protein isolate gel. Food Structure, 28, 100169. https://doi.org/10.1016/J.FOOSTR.2020.100169
68. Ling, B., Cheng, T., & Wang, S. (2020). Recent developments in appli- cations of radio frequency heating for improving safety and quality of food grains and their products: A review. Critical Reviews in Food Science and Nutrition, 60(15), 2622–2642. https://doi.org/10.1080/10408398.2019.1651690
69. Liu, J., Wang, R., Chen, Z., & Li, X. (2021). Effect of cold plasma treatment on cooking, thermomechanical and surface structural properties of Chinese milled rice. Food and Bioprocess Technology, 14(5), 866–886. https://doi.org/10.1007/S11947-021-02614-1/METRICS
70. Liu, S., He, T., Rafique, H., Zou, L., & Hu, X. (2022). Effect of low- temperature plasma treatment on the microbial inactivation and physicochemical properties of the oat grain. Cereal Chemistry, 99(6), 1373–1382. https://doi.org/10.1002/CCHE.10599
71. Liu, S., Yin, H., Pickard, M., & Ai, Y. (2020). Influence of infrared heating on the functional properties of processed lentil flours: A study focusing on tempering period and seed size. Food Research International, 136, 109568. https://doi.org/10.1016/J.FOODRES.2020.109568
72. Luo, X. E., Wang, R. Y., Wang, J. H., Li, Y., Luo, H. N., Zeng, X. A., Woo, M. W., & Han, Z. (2023). Combining pulsed electric field and cross-linking to enhance the structural and physicochemical properties of corn porous starch. Food Chemistry, 418, 135971. https://doi.org/10.1016/J.FOODCHEM.2023.135971
73. Mahalaxmi, S., Himashree, P., Malini, B., & Sunil, C. K. (2022). Effect of microwave treatment on the structural and functional properties of proteins in lentil flour. Food Chemistry Advances, 1, 100147. https://doi.org/10.1016/J.FOCHA.2022.100147
74. Mahendran, R., Kavitha Abirami, C. V., & Alagusundaram, K. (2017). Cold plasma technology: An emerging non-thermal processing of foods—A review. In Engineering interventions in agricultural processing (pp. 33–55). Apple Academic Press. https://doi.org/10.1201/9781315207377-2
75. Mahmood, N., Liu, Y., Munir, Z., Zhang, Y., & Niazi, B. M. K. (2022). Effects of hot air assisted radio frequency drying on heating uniformity, drying characteristics and quality of paddy. LWT-Food Science and Technology, 158, 113131. https://doi.org/10.1016/J.LWT.2022.113131
76. Mahmood, N., Liu, Y., Saleemi, M. A., Munir, Z., Zhang, Y., & Saeed, R. (2023). Investigation of physicochemical and textural properties of brown rice by hot air assisted radio frequency drying. Food and Bioprocess Technology, 16(7), 1555–1569. https://doi.org/ 10.1007/S11947-023-03001-8/METRICS
77. Mazı, B. G., Yıldız, D., & Barutçu Mazı, I. (2023). Influence of different soaking and drying treatments on anti-nutritional composition and technological characteristics of red and green lentil (Lens culinaris Medik.) flour. Journal of Food Measurement and Characterization, 17(4), 3625–3643. https://doi.org/10.1007/S11694-023-01906-8
78. Meurer, M. C., de Souza, D., & Ferreira Marczak, L. D. (2020). Effects of ultrasound on technological properties of chickpea cooking water (aquafaba). Journal of Food Engineering, 265, 109688. https://doi.org/10.1016/J.JFOODENG.2019.109688
79. Miano, A. C., Ibarz, A., & Augusto, P. E. D. (2016). Mechanisms for improving mass transfer in food with ultrasound technology: Describing the phenomena in two model cases. Ultrasonics Sonochemistry, 29, 413–419. https://doi.org/10.1016/J.ULTSONCH.2015.10.020
80. Miano, A. C., Ibarz, A., & Augusto, P. E. D. (2017). Ultrasound technology enhances the hydration of corn kernels without affecting their starch properties. Journal of Food Engineering, 197, 34–43. https://doi.org/10.1016/J.JFOODENG.2016.10.024
81. Munekata, P. E. S., Domínguez, R., Pateiro, M., & Lorenzo, J. M. (2020). Influence of plasma treatment on the polyphenols of food products—A review. Foods, 9(7), 929. https://doi.org/10.3390/ FOODS9070929
82. Nath, K. G., Pandiselvam, R., & Sunil, C. K. (2023). High-pressure processing: Effect on textural properties of food - A review. Journal of Food Engineering, 351, 111521. https://doi.org/10.1016/J.JFOODENG.2023.111521
83. Nwachukwu, I. D., & Aluko, R. E. (2021). CHAPTER 1: Food Protein Structures, Functionality and Product Development. In C. C. Udenigwe (Ed.), Nutritional Signaling Pathway Activities in Obesity and Diabetes (27 ed., pp. 1-33). (Food Chemistry, Function and Analysis; Vol. 2021-January, No. 27). Royal Society of Chemistry. https://doi.org/10.1039/9781839163425-00001
84. Oey, I., Duvetter, T., Sila, D. N., Van Eylen, D., Van Loey, A., & Hendrickx, M. (2008). High pressure processing to optimise the quality of in-pack processed fruit and vegetables. In In-pack processed foods: Improving quality (pp. 338–357). Elsevier. https://doi.org/10.1533/9781845694692.4.338
85. Ogundele, O. M., & Kayitesi, E. (2019). Influence of infrared heating processing technology on the cooking characteristics and functionality of African legumes: A review. Journal of Food Science and Technology, 56(4), 1669. https://doi.org/10.1007/S13197-019-03661-5
86. Oke, A. B., & Baik, O. D. (2022). Role of moisture content, temperature, and frequency on dielectric behaviour of red lentil and Kabuli chickpea in relation to radio frequency heating. Applied Food Research, 2(1), 100046. https://doi.org/10.1016/J. AFRES.2022.100046
87. Oyeyinka, S. A., Oyedeji, A. B., Ogundele, O. M., Adebo, O. A., Njobeh, P. B., & Kayitesi, E. (2021). Infrared heating under optimized conditions enhanced the pasting and swelling behaviour of cowpea starch. International Journal of Biological Macromolecules, 184, 678–688. https://doi.org/10.1016/J.IJBIOMAC.2021.06.129
88. Pan, C., Ishizaki, S., Nagashima, Y., & Watabe, S. (2019). Functional and structural properties of red color-related pigment-binding protein from the shell of Litopenaeus vannamei. Journal of the Science of Food and Agriculture, 99(4), 1719–1727. https://doi.org/10.1002/ JSFA.9361
89. Pandiselvam, R., Kothakota, A., & Manikantan, M. R. (2022). Food processing and implications to the textural, structural, and rheological characteristics of food. Journal of Texture Studies, 53(6), 707–708. https://doi.org/10.1111/JTXS.12732
90. Pandiselvam, R., Singh, A., Agriopoulou, S., Sachadyn-Król, M., Aslam, R., Gonçalves Lima, C. M., Khanashyam, A. C., Kothakota, A., Atakan, O., Kumar, M., Mathanghi, S. K., & Mousavi Khaenegah, A. (2022). A comprehensive review of impacts of ozone treatment on textural properties in different food products. Trends in Food Science & Technology, 127, 74–86. https://doi.org/ 10.1016/J.TIFS.2022.06.008
91. Pandiselvam, R., Tak, Y., Olum, E., Sujayasree, O. J., Tekgül, Y., Çalışkan Koç, G., Kaur, M., Nayi, P., Kothakota, A., & Kumar, M. (2022). Advanced osmotic dehydration techniques combined with emerging drying methods for sustainable food production: Impact on bioactive components, texture, color, and sensory properties of food. Journal of Texture Studies, 53(6), 737–762. https://doi.org/10. 1111/JTXS.12643
92. Paramita, V. D., Panyoyai, N., & Kasapis, S. (2020). Molecular functionality of plant proteins from low- to high-solid systems with ligand and co-solute. International Journal of Molecular Sciences, 21(7), 2550. https://doi.org/10.3390/IJMS21072550
93. Pu, H., Wei, J., Wang, L., Huang, J., Chen, X., Luo, C., Liu, S., & Zhang, H. (2017). Effects of potato/wheat flours ratio on mixing properties of dough and quality of noodles. Journal of Cereal Science, 76, 236–242. https://doi.org/10.1016/J.JCS.2017.06.020
94. Qiu, S., Abbaspourrad, A., & Padilla-Zakour, O. I. (2021). Changes in the glutinous rice grain and physicochemical properties of its starch upon moderate treatment with pulsed electric field. Foods, 10(2), 395. https://doi.org/10.3390/FOODS10020395
95. Rahman, M. M., & Lamsal, B. P. (2023). Effects of atmospheric cold plasma and high-power sonication on rheological and gelling properties of mung bean protein dispersions. Food Research International, 163, 112265. https://doi.org/10.1016/J.FOODRES.2022.112265
96. Rocha, C. S., Magnani, M., de Paiva Anciens Ramos, G. L., Bezerril, F. F., Freitas, M. Q., Cruz, A. G., & Pimentel, T. C. (2022). Emerging technologies in food processing: Impacts on sensory characteristics and consumer perception. Current Opinion in Food Science, 47, 100892. https://doi.org/10.1016/J.COFS.2022.100892
97. Roknul, A. S. M., Zhang, M., Mujumdar, A. S., & Wang, Y. (2014). A comparative study of four drying methods on drying time and quality characteristics of stem lettuce slices (Lactuca sativa L.). Drying Technology, 32(6), 657–666. https://doi.org/10.1080/07373937.2013.850435
98. Sakare, P., Prasad, N., Thombare, N., Singh, R., & Sharma, S. C. (2020). Infrared drying of food materials: Recent advances. Food Engineering Reviews, 12(3), 381–398. https://doi.org/10.1007/S12393-020-09237-W/METRICS
99. Sakudo, A., Yagyu, Y., & Onodera, T. (2019). Disinfection and sterilization using plasma technology: Fundamentals and future perspectives for biological applications. International Journal of Molecular Sciences, 20(20), 5216. https://doi.org/10.3390/IJMS20205216
100. Sarangapani, C., Yamuna Devi, R., Thirumdas, R., Trimukhe, A. M., Deshmukh, R. R., & Annapure, U. S. (2017). Physico-chemical properties of low-pressure plasma treated black gram. LWT— Food Science and Technology, 79, 102–110. https://doi.org/10.1016/ J.LWT.2017.01.017
101. Shams, R., Manzoor, S., Shabir, I., Dar, A. H., Dash, K. K., Srivastava, S., Pandey, V. K., Bashir, I., & Khan, S. A. (2023). Pulsed electric field-induced modification of proteins: A comprehensive review. Food and Bioprocess Technology, 2023, 1–33. https://doi.org/10.1007/S11947-023-03117-X
102. Shanker, M. A., Khanashyam, A. C., Pandiselvam, R., Joshi, T. J., Thomas, P. E., Zhang, Y., Rustagi, S., Bharti, S., Thirumdas, R., Kumar, M., & Kothakota, A. (2023). Implications of cold plasma and plasma activated water on food texture—A review. Food Control, 151, 109793. https://doi.org/10.1016/J.FOODCONT.2023.109793
103. Shen, L., Zhu, Y., Wang, L., Liu, C., Liu, C., & Zheng, X. (2019). Improvement of cooking quality of germinated brown rice attributed to the fissures caused by microwave drying. Journal of Food Science and Technology, 56(5), 2737–2749. https://doi.org/10.1007/S13197-019-03765-Y
104. Sridhar, K., Bouhallab, S., Croguennec, T., Renard, D., & Lechevalier, V. (2022). Application of high-pressure and ultrasound technolo- gies for legume proteins as wall material in microencapsulation: New insights and advances. Trends in Food Science & Technology, 127, 49–62. https://doi.org/10.1016/J.TIFS.2022.07.006
105. Süfer, Ö., DemiR˙ , H., & Sezer, S. (2018). Convective and microwave drying of onion slices regarding texture attributes. Czech Journal of Food Sciences, 36(2), 187–193. https://doi.org/10.17221/310/2017- CJFS
106. Thirumdas, R., Saragapani, C., Ajinkya, M. T., Deshmukh, R. R., & Annapure, U. S. (2016). Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innovative Food Science & Emerging Technologies, 37, 53–60. https://doi.org/10.1016/J. IFSET.2016.08.009
107. Timm, N. d. S., Lang, G. H., Ferreira, C. D., Pohndorf, R. S., & de Oliveira, M. (2020). Infrared radiation drying of parboiled rice: Influence of temperature and grain bed depth in quality aspects. Journal of Food Process Engineering, 43(4), e13375. https://doi.org/ 10.1111/JFPE.13375
108. Trung, P. T. B., Ngoc, L. B. B., Hoa, P. N., Tien, N. N. T., & Hung, P. V. (2017). Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties. International Journal of Biological Macromolecules, 105, 1071–1078. https://doi.org/10.1016/ J.IJBIOMAC.2017.07.131
109. Vicente, A., Villanueva, M., Caballero, P. A., Muñoz, J. M., & Ronda, F. (2023). Buckwheat grains treated with microwave radiation: Impact on the techno-functional, thermal, structural, and rheological properties of flour. Food Hydrocolloids, 137, 108328. https://doi.org/10.1016/J.FOODHYD.2022.108328
110. Wang, M. S., Wang, L. H., Bekhit, A. E. D. A., Yang, J., Hou, Z. P., Wang, Y. Z., Dai, Q. Z., & Zeng, X. A. (2018). A review of sub-lethal effects of pulsed electric field on cells in food processing. Journal of Food Engineering, 223, 32–41. https://doi.org/10.1016/J.JFOODENG.2017.11.035
111. Wu, G., Morris, C. F., & Murphy, K. M. (2017). Quinoa starch characteristics and their correlations with the texture profile analysis (TPA) of cooked quinoa. Journal of Food Science, 82(10), 2387–2395. https://doi.org/10.1111/1750-3841.13848
112. Xie, Y., Lin, Y., Li, X., Yang, H., Han, J., Shang, C., Li, A., Xiao, H., & Lu, F. (2022). Peanut drying: Effects of various drying methods on drying kinetic models, physicochemical properties, germination characteristics, and microstructure. Information Processing in Agriculture, 10(4), 447–458. https://doi.org/10.1016/J.INPA.2022.04.004
113. Xu, J., Yang, G., Zhou, D., Fan, L., Xu, Y., Guan, X., Li, R., & Wang, S. (2023). Effect of radio frequency energy on buckwheat quality: An insight into structure and physicochemical properties of protein and starch. International Journal of Biological Macromolecules, 251, 126428. https://doi.org/10.1016/J.IJBIOMAC.2023.126428
114. Yang, C., Zhao, Y., Tang, Y., Yang, R., Yan, W., & Zhao, W. (2018). Radio frequency heating as a disinfestation method against Corcyra cephalonica and its effect on properties of milled rice. Journal of Stored Products Research, 77, 112–121. https://doi.org/10.1016/J. JSPR.2018.04.004
115. Yang, Y., Zhou, Y., Lyu, Y., Shao, B., & Xu, Y. (2023). High-throughput multitarget quantitative assay to profile the whole grain-specific phytochemicals alkylresorcinols, benzoxazinoids and avenanthramides in whole grain and grain-based foods. Food Chemistry, 426, 136663. https://doi.org/10.1016/J.FOODCHEM.2023.136663
116. Yang, Z. H., Zhou, H. M., & Bai, Y. P. (2021). Effects of vacuum ultra- sonic treatment on the texture of vegetarian meatloaves made from textured wheat protein. Food Chemistry, 361, 130058. https://doi.org/10.1016/J.FOODCHEM.2021.130058
117. Zambelli, R. A., Galvão, A. M. M. T., de Mendonça, L. G., Leão, M.V. d. S., Carneiro, S. V., Lima, A. C. S., & Melo, C. A. L. (2018). Effect of different levels of acetic, citric and lactic acid in the cassava starch modification on physical, rheological, thermal and microstructural properties. Food Science and Technology Research, 24(4), 747–754.
118. Zeng, F., Gao, Q. Y., Han, Z., Zeng, X. A., & Yu, S. J. (2016). Structural properties and digestibility of pulsed electric field treated waxy rice starch. Food Chemistry, 194, 1313–1319. https://doi.org/10.1016/J.FOODCHEM.2015.08.104
119. Zhang, B., Tan, C., Zou, F., Sun, Y., Shang, N., & Wu, W. (2022). Impacts of cold plasma technology on sensory, nutritional and safety quality of food: A review. Foods, 11(18), 2818. https://doi.org/ 10.3390/FOODS11182818
120. Zhang, B., Xiao, Y., Wu, X., Luo, F., Lin, Q.,& Ding, Y. (2021). Changes in structural, digestive, and rheological properties of corn, potato, and pea starches as influenced by different ultrasonic treatments. International Journal of Biological Macromolecules, 185, 206–218. https://doi.org/10.1016/J.IJBIOMAC.2021.06.127
121. Zhang, C., Lyu, X., Arshad, R. N., Aadil, R. M., Tong, Y., Zhao, W., & Yang, R. (2023). Pulsed electric field as a promising technology for solid foods processing: A review. Food Chemistry, 403, 134367. https://doi.org/10.1016/J.FOODCHEM.2022.134367
122. Zhang, L., Hu, Y., Wang, X., Abiola Fakayode, O., Ma, H., Zhou, C., Xia, A., & Li, Q. (2021). Improving soaking efficiency of soybeans through sweeping frequency ultrasound assisted by parameters optimization. Ultrasonics Sonochemistry, 79, 105794. https://doi.org/10.1016/J.ULTSONCH.2021.105794
123. Zhang, S., Guan, E., Bian, k., Xu, M., & Zhang, K. (2015). Digestibility of starch and protein during accelerated aging of wheat. Journal of the Chinese Cereals and Oils Association, 30(2), 11–14.
124. Zhang, Z., Zhang, M., & Zhao, W. (2023). Effect of starch-protein interaction on regulating the digestibility of waxy rice starch under radio frequency treatment with added CaCl2. International Journal of Biological Macromolecules, 232, 123236. https://doi.org/10.1016/J.IJBIOMAC.2023.123236
125. Zhou, D., Yang, G., Tian, Y., Kang, J., & Wang, S. (2023). Different effects of radio frequency and heat block treatments on multi- scale structure and pasting properties of maize, potato, and pea starches. Food Hydrocolloids, 136, 108306. https://doi.org/10.1016/J.FOODHYD.2022.108306
126. Zhou, J., Yan, B., Wu, Y., Zhu, H., Lian, H., Zhao, J., Zhang, H., Chen, W., & Fan, D. (2021). Effects of sourdough addition on the textural and physiochemical attributes of microwaved steamed-cake. LWT- Food Science and Technology, 146, 111396. https://doi.org/10.1016/J.LWT.2021.111396
127. Zhou, X., Liu, L., Fu, P., Lyu, F., Zhang, J., Gu, S., & Ding, Y. (2018). Effects of infrared radiation drying and heat pump drying combined with tempering on the quality of long-grain paddy rice. International Journal of Food Science and Technology, 53(11), 2448–2456. https://doi.org/10.1111/IJFS.13834
Дополнительные файлы
Рецензия
Для цитирования:
Бурак Л.Ч., Сапач А.Н. Улучшение технологических свойств продовольственного зерна за счет использования современных технологий: Обзор предметного поля. Health, Food & Biotechnology. 2024;6(1). https://doi.org/10.36107/hfb.2024.i1.s204
For citation:
Burak L.Ch., Sapach A.N. Improving Technological Properties of Food Grain Through the Use of Modern Technologies: Scoping Review. Health, Food & Biotechnology. 2024;6(1). (In Russ.) https://doi.org/10.36107/hfb.2024.i1.s204