Improving Technological Properties of Food Grain Through the Use of Modern Technologies: Scoping Review
https://doi.org/10.36107/hfb.2024.i1.s204
Abstract
Introduction. Over the past decades, the interest of the scientific community in modern technologies of thermal and non-thermal processing has grown significantly. Reducing processing time and the negative impact on product quality allows us to consider these technologies as an effective alternative to traditional thermal methods.
Purpose. The purpose of the article is to conduct a critical analysis, systematization and generalization of the results of scientific research on the fundamental principles and advantages of thermal and non-thermal processing technologies and their impact on the textural properties of food grains.
Materials and Methods. The review includes foreign articles published in English for the period 2015-2024. The search for foreign scientific literature in English on this topic was carried out in the bibliographic databases Scopus, Web of Science, Elsevier and Google Scholar. The materials for the study included 143 articles. When selecting publications for review, priority was given to highly cited sources.
Results. Modern non-thermal and thermal methods are an environmentally friendly and effective alternative to traditional chemical and thermal processing of food grains. A review of scientific research has shown that in addition to food safety and quality, the use of new technologies is, in most cases, positively correlated with the textural quality of food grains. Sonication causes the internal hydrogen bonds between protein molecules to break, thereby weakening their tertiary and quaternary structures. In addition, ultrasound treatment enhances the hydrolysis of starch and reduces its viscosity. Treatment with a pulsed electric field can cause configurational and molecular changes in the biomacromolecules of raw materials. As a result of radio frequency heating, an increase in the swelling of granules occurs, which leads to easier gelatinization and retrogradation of starch, while reducing the stability of the starch dough. Microwave heating results in the formation of denser and more uniform pores and structures within the sample, thereby promoting the formation of a starch hydration gel network. However, there are unresolved problems in the process of using modern grain processing technologies. Differences in equipment design, modes, and operating conditions do not allow us to fully assess the impact of these methods on the consistency of food grains.
Conclusions. In order to maximize the benefits of modern non-thermal and thermal technologies, in-depth studies of their influence on the textural properties of various types of grains and legumes are required, while ensuring the selection and development of processing parameters for each type of food grain. The results of this review may be of interest for further scientific research, as well as for food industry specialists in order to introduce these advanced technologies. Industrial implementation of modern technologies can become an effective alternative to traditional methods of processing grains and legumes.
About the Authors
Leonid Ch. BurakBelarus
Aleksandr N. Sapach
Belarus
References
1. Adebowale, O. J., Taylor, J. R. N., & de Kock, H. L. (2020). Stabi- lization of wholegrain sorghum flour and consequent potential improvement of food product sensory quality by microwave treat- ment of the kernels. LWT-Food Science and Technology, 132, 109827. https://doi.org/10.1016/J.LWT.2020.109827
2. Alpos, M., Leong, S. Y., Liesaputra, V., & Oey, I. (2022). Influence of pulsed electric fields (PEF) with calcium addition on the texture profile of cooked black beans (Phaseolus vulgaris) and their par- ticle breakdown during in vivo oral processing. Innovative Food Science & Emerging Technologies, 75, 102892. https://doi.org/10. 1016/J.IFSET.2021.102892
3. An, N. N., Sun, W. H., Li, B. Z., Wang, Y., Shang, N., Lv, W. Q., Li, D., & Wang, L. J. (2022). Effect of different drying techniques on drying kinetics, nutritional components, antioxidant capacity, physical properties and microstructure of edamame. Food Chemistry, 373, 131412. https://doi.org/10.1016/J.FOODCHEM.2021.131412
4. Andreou, V., Sigala, A., Limnaios, A., Dimopoulos, G., & Taoukis, P. (2021). Effect of pulsed electric field treatment on the kinetics of rehydration, textural properties, and the extraction of intracellu- lar compounds of dried chickpeas. Journal of Food Science, 86(6), 2539–2552. https://doi.org/10.1111/1750-3841.15768
5. Areesirisuk, A., Wanlapa, A., Teeka, J., Kaewpa, D., & Chiu, C.
6. H. (2023). Potential of infrared drying and cell-protective agent efficiency on survival of Lactobacillus plantarum probiotic in fer- mented soybean meal. Biocatalysis and Agricultural Biotechnology, 53, 102843. https://doi.org/10.1016/J.BCAB.2023.102843
7. Aslam, R., Alam, M. S., Kaur, J., Panayampadan, A. S., Dar, O. I., Kothakota, A., & Pandiselvam, R. (2022). Understanding the effects of ultrasound processng on texture and rheological prop- erties of food. Journal of Texture Studies, 53(6), 775–799. https:// doi.org/10.1111/JTXS.12644
8. Aslam, R., Alam, M. S., Singh, S., & Kumar, S. (2021). Aqueous ozone sanitization of whole peeled onion: Process optimization and eval- uation of keeping quality during refrigerated storage. LWT-Food Science and Technology, 151, 112183. https://doi.org/10.1016/J.LWT.2021.112183
9. Astráin-Redín, L., Alejandre, M., Raso, J., Cebrián, G., & Álvarez, I. (2021). Direct contact ultrasound in food processing: Impact on food quality. Frontiers in Nutrition, 8, 633070. https://doi.org/10. 3389/FNUT.2021.633070
10. Bagheri, H., Kashaninejad, M., Ziaiifar, A. M., & Aalami, M. (2019). Textural, color and sensory attributes of peanut kernels as affected by infrared roasting method. Information Processing in Agriculture, 6(2), 255–264. https://doi.org/10.1016/J.INPA.2018.11.001
11. Bahrami, N., Bayliss, D., Chope, G., Penson, S., Perehinec, T., & Fisk, I. D. (2016). Cold plasma: A new technology to modify wheat flour functionality. Food Chemistry, 202, 247–253. https://doi.org/ 10.1016/J.FOODCHEM.2016.01.113
12. Bai, T. G., Zhang, L., Qian, J. Y., Jiang, W., Wu, M., Rao, S. Q., Li, Q., Zhang, C., & Wu, C. (2021). Pulsed electric field pretreatment modifying digestion, texture, structure and flavor of rice. LWT- Food Science and Technology, 138, 110650. https://doi.org/10.1016/ J.LWT.2020.110650
13. Barbhuiya, R. I., Singha, P., & Singh, S. K. (2021). A comprehen- sive review on impact of non-thermal processing on the structural changes of food components. Food Research International, 149, 110647. https://doi.org/10.1016/j.foodres.2021.110647
14. Barman, D., & Dkhar, M. S. (2015). Amylolytic activity and its para- metric optimization of an endophytic bacterium Bacillus subtilis with an ethno-medicinal origin. Biologia, 70(3), 283–293. https:// doi.org/10.1515/BIOLOG-2015-0047/METRICS
15. Bassey, E. J., Cheng, J. H., & Sun, D. W. (2022). Improving drying kinetics, physicochemical properties and bioactive com- pounds of red dragon fruit (Hylocereus species) by novel infrared drying. Food Chemistry, 375, 131886. https://doi.org/10.1016/J. FOODCHEM.2021.131886
16. Boateng, I. D. (2022). Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, struc- ture, and drying performance. Critical Reviews in Food Science and Nutrition, 1–35. https://doi.org/10.1080/10408398.2022.2140121
17. Bonto, A. P., Tiozon, R. N., Sreenivasulu, N., & Camacho, D. H. (2021). Impact of ultrasonic treatment on rice starch and grain func- tional properties: A review. Ultrasonics Sonochemistry, 71, 105383. https://doi.org/10.1016/J.ULTSONCH.2020.105383
18. Bruce, R. M., Atungulu, G. G., Sadaka, S., & Mauromoustakos, A. (2022). Aging characteristics of rice dried using microwave at 915 MHz frequency. Cereal Chemistry, 99(6), 1218–1233. https://doi. org/10.1002/CCHE.10584
19. Burak, L. Ch., Sapach A.N.(2023) The influence of pre-treatment with a pulsed electric field on the drying process: a review of the subject field. Storage and processing of agricultural raw materials, 2, 44-71. https://doi.org/10.36107/spfp.2023.418
20. Cao, G., Chen, X., Hu, B., Yang, Z., Wang, M., Song, S., Wang, L., & Wen, C. (2023). Effect of ultrasound-assisted resting on the qual- ity of surimi-wheat dough and noodles. Ultrasonics Sonochemistry, 94, 106322. https://doi.org/10.1016/J.ULTSONCH.2023.106322
21. Cao, H., Sun, R., Liu, Y., Wang, X., Guan, X., Huang, K., & Zhang, Y. (2022). Appropriate microwave improved the texture properties of quinoa due to starch gelatinization from the destructed cyptomere structure. Food Chemistry: X, 14, 100347. https://doi.org/10.1016/J. FOCHX.2022.100347
22. Carullo, D., Abera, B. D., Scognamiglio, M., Donsì, F., Ferrari, G., & Pataro, G. (2022). Application of pulsed electric fields and high-pressure homogenization in biorefinery cascade of C. vulgaris microalgae. Foods, 11(3), 471. https://doi.org/10.3390/ FOODS11030471
23. Castillo-Gironés, S., Masztalerz, K., Lech, K., Issa-Issa, H., Figiel, A., & Carbonell-Barrachina, A. A. (2021). Impact of osmotic dehy- dration and different drying methods on the texture and sensory characteristic of sweet corn kernels. Journal of Food Processing and Preservation, 45(4), e15383. https://doi.org/10.1111/JFPP.15383
24. Chen, G., Dong, S., Zhao, S., Li, S., & Chen, Y. (2019). Improving functional properties of zein film via compositing with chitosan and cold plasma treatment. Industrial Crops and Products, 129, 318–326. https://doi.org/10.1016/J.INDCROP.2018.11.072
25. Chen, Y., Zhang, Y., Jiang, L., Chen, G., Yu, J., Li, S., & Chen, Y. (2020). Moisture molecule migration and quality changes of fresh wet noodles dehydrated by cold plasma treatment. Food Chemistry, 328, 127053. https://doi.org/10.1016/J.FOODCHEM.2020.127053
26. Chhanwal, N., Bhushette, P. R., & Anandharamakrishnan, C. (2019). Current perspectives on non-conventional heating ovens for bak- ing process—A review. Food and Bioprocess Technology, 12(1), 1–15. https://doi.org/10.1007/S11947-018-2198-Y/METRICS
27. Chitsuthipakorn, K., & Thanapornpoonpong, S. (2023). Verification of rice quality during storage after drying with hot air and radio frequency heating. Food Chemistry: X, 20, 100882. https://doi.org/ 10.1016/J.FOCHX.2023.100882
28. Chung, H. J., Cho, D. W., Park, J. D., Kweon, D. K., & Lim, S. T. (2012). In vitro starch digestibility and pasting properties of germi- nated brown rice after hydrothermal treatments. Journal of Cereal Science, 56(2), 451–456. https://doi.org/10.1016/J.JCS.2012.03.010
29. Di Rosa, D. A. R., Bressan, F., Leone, F., Falqui, L., & Chiofalo,
30. V. (2019). Radio frequency heating on food of animal origin: A review. European Food Research and Technology, 245(9), 1787–1797. https://doi.org/10.1007/S00217-019-03319-8/METRICS
31. Dang, B., Zhang, W. G., Zhang, J., Yang, X. J., & Xu, H. D. (2022). Effect of thermal treatment on the internal structure, physicochemical properties and storage stability of whole grain highland barley flour. Foods, 11(14), 2021. https://doi.org/10.3390/FOODS11142021 Degon, J. G., Zheng, C., Elkhedir, A., Yang, B., Zhou, Q., & Li,W. (2021). Effect of microwave pre-treatment on physical quality, bioactive compounds, safety risk factor, and storage stability of peanut butter. Oil Crop Science, 6(3), 137–144. https://doi.org/10. 1016/J.OCSCI.2021.07.006
32. De Pilli, T., & Alessandrino, O. (2018). Effects of different cooking technologies on biopolymers modifications of cereal-based foods: Impact on nutritional and quality characteristics review. Critical Reviews in Food Science and Nutrition, 60(4), 556–565. https://doi. org/10.1080/10408398.2018.1544884
33. Devraj, L., Natarajan, V., Vadakkeppulpara Ramachandran, S., Manicakam, L., & Sarvanan, S. (2020). Influence of microwave heating as accelerated aging on physicochemical, texture, pasting properties, and microstructure in brown rice of selected Indian rice varieties. Journal of Texture Studies, 51(4), 663–679. https://doi. org/10.1111/JTXS.12522
34. Ding, C., Chang, L., Luo, Y., Tao, T., Atungulu, G. G., Ding, H., Huang, L., Simelane, M. B., Zhao, S., & Liu, Q. (2023). Influence of cooking and texture attributes of far infrared radiated Japonica rice during storage. Journal of Cereal Science, 112, 103710. https://doi.org/10. 1016/J.JCS.2023.103710
35. Ding, J., Hou, G. G., Dong, M., Xiong, S., Zhao, S.,& Feng, H. (2018). Physicochemical properties of germinated dehulled rice flour and energy requirement in germination as affected by ultrasound treat- ment. Ultrasonics Sonochemistry, 41, 484–491. https://doi.org/10. 1016/J.ULTSONCH.2017.10.010
36. Ding, T., Cullen, P. J., & Yan, W. (2022). Applications of cold plasma in food safety. In Applications of cold plasma in food safety. Springer Singapore. https://doi.org/10.1007/978-981-16-1827-7/COVER
37. Duque, S. M. M., Leong, S. Y., Agyei, D., Singh, J., Larsen, N., Sutton, K., & Oey, I. (2022). Understanding the mechanism of how pulsed electric fields treatment affects the digestibility and characteristics of starch in oat flour. Applied Sciences, 12(20), 10293. https://doi. org/10.3390/APP122010293
38. Flores-Silva, P. C., Roldan-Cruz, C. A., Chavez-Esquivel, G., Vernon-Carter, E. J., Bello-Perez, L. A., & Alvarez-Ramirez, J. (2017). In vitro digestibility of ultrasound-treated corn starch. Starch—Stärke, 69(9–10), 1700040. https://doi.org/10.1002/STAR.
39.
40. Gao, J., Wu, M., Du, S., Zhang, H., Wang, S., & Ling, B. (2023). Recent advances in food processing by radio frequency heating techniques: A review of equipment aspects. Journal of Food Engi- neering, 357, 111609. https://doi.org/10.1016/J.JFOODENG.2023.
41.
42. Gebremical, G. G., Emire, S. A., & Berhanu, T. (2019). Effects of multihollow surface dielectric barrier discharge plasma on chem- ical and antioxidant properties of peanut. Journal of Food Quality, 2019, 1–10. https://doi.org/10.1155/2019/3702649
43. Geng, D. H., Lin, Z., Liu, L., Qin, W., Wang, A., Wang, F., & Tong, L.
44. T. (2021). Effects of ultrasound-assisted cellulase enzymatic treat- ment on the textural properties and in vitro starch digestibility of brown rice noodles. LWT-Food Science and Technology, 146, 111543. https://doi.org/10.1016/J.LWT.2021.111543
45. Golani, R., Leishangthem, C., Xiao, H., Zhang, Q., & Sutar, P. P. (2023). Effect of high temperature short time infrared roasting of peanuts. Journal of Future Foods, 4(2), 173–178. https://doi.org/10. 1016/J.JFUTFO.2023.06.009
46. Gong, X., Chen, Z., Hu, J. J., & Liu, C. (2022). Advances of electroporation-related therapies and the synergy with immunotherapy in cancer treatment. Vaccines, 10(11), 1942. https://doi.org/10.3390/VACCINES10111942
47. Guiyun, C., Yushan, W., Mingyue, Z., Wanxing, M., Xixian, X., & Ye, C. (2022). Cold atmospheric plasma treatment improves the γ-aminobutyric acid content of buckwheat seeds providing a new anti-hypertensive functional ingredient. Food Chemistry, 388, 133064. https://doi.org/10.1016/J.FOODCHEM.2022.133064
48. Hassan, A. B., von Hoersten, D., & Mohamed Ahmed, I. A. (2019). Effect of radio frequency heat treatment on protein profile and functional properties of maize grain. Food Chemistry, 271, 142–147. https://doi.org/10.1016/J.FOODCHEM.2018.07.190
49. Homayoonfal, M., & Malekjani, N. (2023). Drying of cereal grains and beans. In Drying technology in food processing (pp. 459–489). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819895- 7.00009-2
50. Hong, J., An, D., Liu, C., Li, L., Han, Z., Guan, E., Xu, B., Zheng, X.,& Bian, K. (2020). Rheological, textural, and digestible properties of fresh noodles: Influence of starch esterified by conventional and pulsed electric field-assisted dual technique with full range of amy- lose content. Journal of Food Processing and Preservation, 44(8), e14567. https://doi.org/10.1111/JFPP.14567
51. Huang, W., Song, E., Lee, D., Seo, S., Lee, J., Jeong, J., Chang, Y. H., Lee, Y. M., & Hwang, J. (2021). Characteristics of functional brown rice prepared by parboiling and microwave drying. Journal of Stored Products Research, 92, 101796. https://doi.org/10.1016/J. JSPR.2021.101796
52. International Grain Council (IGC). (2023). https://www.igc.int/en/ default.aspx
53. Jarén, C., López, A., & Arazuri, S. (2016). Advanced analytical techniques for quality evaluation of potato and its products. In Advances in potato chemistry and technology (pp. 563–602). Aca- demic Press. https://doi.org/10.1016/B978-0-12-800002-1.00019-4
54. Ji, W., Li, M., Yang, T., Li, H., Li, W., Wang, J., & Ma, M. (2022). Effect
55. of cold plasma on physical–biochemical properties and nutritional components of soybean sprouts. Food Research International, 161, 111766. https://doi.org/10.1016/J.FOODRES.2022.111766
56. Ji, X., Xiong, Y. L., & Jiang, J. (2023). Tunable rice protein–starch composite soft gels: Structural role of ultrasound-modified pro- tein. Food Hydrocolloids, 148, 109462. https://doi.org/10.1016/J. FOODHYD.2023.109462
57. Jiao, Y., Tang, J., Wang, Y., & Koral, T. L. (2018). Radio-frequency applications for food processing and safety. Annual Review of Food Science and Technology, 9, 105–127. https://doi.org/10.1146/ ANNUREV-FOOD-041715-033038
58. Jimoh, K. A., Hashim, N., Shamsudin, R., Man, H. C., Jahari, M., & Onwude, D. I. (2023). Recent advances in the drying process of grains. Food Engineering Reviews, 15(3), 548–576. https://doi.org/ 10.1007/S12393-023-09333-7/FIGURES/1
59. Juodeikiene, G., Zadeike, D., Trakselyte-Rupsiene, K., Gasauskaite, K., Bartkiene, E., Lele, V., Viskelis, P., Bernatoniene, J., Ivanauskas, L., & Jakstas, V. (2020). Functionalisa- tion of flaxseed proteins assisted by ultrasonication to produce coatings enriched with raspberries phytochem- icals. LWT-Food Science and Technology, 124, 109180. https://doi.org/10.1016/J.LWT.2020.109180
60. Kariman, M., Tabarsa, F., Zamani, S., Kashi, P. A., & Torshizi, M.
61. V. (2019). Classification of the energy and exergy of microwave dryers in drying kiwi using artificial neural networks. Carpathian Journal of Food Science and Technology, 11(2), 29–45.
62. Kong, X. (2019). Starches modified by nonconventional techniques and food applications. In Starches for food application: Chemical, technological and health properties (pp. 271–295). Academic Press. https://doi.org/10.1016/B978-0-12-809440-2.00007-1
63. Kutlu, N., Pandiselvam, R., Saka, I., Kamiloglu, A., Sahni, P., & Kothakota, A. (2022). Impact of different microwave treatments on food texture. Journal of Texture Studies, 53(6), 709–736. https://doi. org/10.1111/JTXS.12635
64. Lara, L. M., Wilson, S. A., Chen, P., & Atungulu, G. G. (2019). The effects of infrared treatment on physicochemical characteristics of vegetable soybean. Heliyon, 5(1), e01148. https://doi.org/10.1016/J. HELIYON.2019.E01148
65. Lee, C. M., & Resurreccion, A. V. A. (2006). Predicting sensory attribute intensities and consumer acceptance of stored roasted peanuts using instrumental measurements. Journal of Food Qual- ity, 29(4), 319–338. https://doi.org/10.1111/J.1745-4557.2006.00076. X
66. Li, A., Guo, Z., Wang, Z., Yang, Q., Wen, L., Xiang, X., & Kan, J. (2023). Effect of multiple-frequency ultrasound-assisted transglutami- nase dual modification on the structural, functional characteris- tics and application of Qingke protein. Ultrasonics Sonochemistry, 94, 106317. https://doi.org/10.1016/J.ULTSONCH.2023.106317
67. Li, M., Wang, B., Lv, W., Lin, R., & Zhao, D. (2022). Characterization of pre-gelatinized kidney bean (Phaseolus vulgaris L.) produced using microwave hot-air flow rolling drying technique. LWT-Food Science and Technology, 154, 112673. https://doi.org/10.1016/J.LWT.2021.112673
68. Li, Q., Wu, Q. Y., Jiang, W., Qian, J. Y., Zhang, L., Wu, M., Rao, S. Q., &
69. Wu, C. S. (2019). Effect of pulsed electric field on structural prop- erties and digestibility of starches with different crystalline type in solid state. Carbohydrate Polymers, 207, 362–370. https://doi.org/ 10.1016/J.CARBPOL.2018.12.001
70. Li, Y., Wang, J. H., Han, Y., Yue, F. H., Zeng, X. A., Chen, B. R., Zeng,
71. M. Q., Woo, M. W., & Han, Z. (2023). The effects of pulsed electric fields treatment on the structure and physicochemical properties of dialdehyde starch. Food Chemistry, 408, 135231. https://doi.org/ 10.1016/J.FOODCHEM.2022.135231
72. Li, Y., Wang, S., Liu, X., Zhao, G., Yang, L., Zhu, L., & Liu, H. (2023). Improvement in texture and color of soy protein isolate gel containing capsorubin and carotenoid emulsions following microwave heating. Food Chemistry, 428, 136743.
73. Li, Y., Zhang, Y., Liu, X., Wang, H., & Zhang, H. (2019). Effect of ultrasound-assisted freezing on the textural characteristics of dough and the structural characterization of wheat gluten. Jour- nal of Food Science and Technology, 56(7), 3380–3390. https://doi. org/10.1007/S13197-019-03822-6/METRICS
74. Lian, F., Sun, D. W., Cheng, J. H., & Ma, J. (2022). Improving modifi- cation of structures and functionalities of food macromolecules by novel thermal technologies. Trends in Food Science & Technology, 129, 327–338. https://doi.org/10.1016/J.TIFS.2022.10.001
75. Liang, Y., Teng, F., He, M., Jiang, L., Yu, J., Wang, X., Li, Y., & Wang, Z. (2021). Effects of ultrasonic treatment on the struc- ture and rehydration peculiarity of freeze-dried soy protein isolate gel. Food Structure, 28, 100169. https://doi.org/10.1016/J.FOOSTR.2020.100169
76. Ling, B., Cheng, T., & Wang, S. (2020). Recent developments in appli- cations of radio frequency heating for improving safety and quality of food grains and their products: A review. Critical Reviews in Food Science and Nutrition, 60(15), 2622–2642. https://doi.org/10. 1080/10408398.2019.1651690
77. Liu, J., Wang, R., Chen, Z., & Li, X. (2021). Effect of cold plasma treatment on cooking, thermomechanical and surface structural properties of Chinese milled rice. Food and Bioprocess Tech- nology, 14(5), 866–886. https://doi.org/10.1007/S11947-021-02614-1/ METRICS
78. Liu, S., He, T., Rafique, H., Zou, L., & Hu, X. (2022). Effect of low- temperature plasma treatment on the microbial inactivation and physicochemical properties of the oat grain. Cereal Chemistry, 99(6), 1373–1382. https://doi.org/10.1002/CCHE.10599
79. Liu, S., Yin, H., Pickard, M., & Ai, Y. (2020). Influence of infrared heating on the functional properties of processed lentil flours: A study focusing on tempering period and seed size. Food Research International, 136, 109568. https://doi.org/10.1016/J.FOODRES.2020.109568
80. Luo, X. E., Wang, R. Y., Wang, J. H., Li, Y., Luo, H. N., Zeng, X. A.,
81. Woo, M. W., & Han, Z. (2023). Combining pulsed electric field and cross-linking to enhance the structural and physicochemi- cal properties of corn porous starch. Food Chemistry, 418, 135971. https://doi.org/10.1016/J.FOODCHEM.2023.135971
82. Mahalaxmi, S., Himashree, P., Malini, B., & Sunil, C. K. (2022). Effect of microwave treatment on the structural and functional proper- ties of proteins in lentil flour. Food Chemistry Advances, 1, 100147. https://doi.org/10.1016/J.FOCHA.2022.100147
83. Mahendran, R., Kavitha Abirami, C. V., & Alagusundaram, K. (2017). Cold plasma technology: An emerging non-thermal processing of foods—A review. In Engineering interventions in agricultural pro- cessing (pp. 33–55). Apple Academic Press. https://doi.org/10.1201/ 9781315207377-2
84. Mahmood, N., Liu, Y., Munir, Z., Zhang, Y., & Niazi, B. M. K. (2022). Effects of hot air assisted radio frequency drying on heating uni- formity, drying characteristics and quality of paddy. LWT-Food Science and Technology, 158, 113131. https://doi.org/10.1016/J.LWT.2022.113131
85. Mahmood, N., Liu, Y., Saleemi, M. A., Munir, Z., Zhang, Y., & Saeed,
86. R. (2023). Investigation of physicochemical and textural prop- erties of brown rice by hot air assisted radio frequency drying. Food and Bioprocess Technology, 16(7), 1555–1569. https://doi.org/ 10.1007/S11947-023-03001-8/METRICS
87. Mazı, B. G., Yıldız, D., & Barutçu Mazı, I. (2023). Influence of differ- ent soaking and drying treatments on anti-nutritional composition and technological characteristics of red and green lentil (Lens culinaris Medik.) flour. Journal of Food Measurement and Char- acterization, 17(4), 3625–3643. https://doi.org/10.1007/S11694-023-01906-8
88. Meurer, M. C., de Souza, D., & Ferreira Marczak, L. D. (2020). Effects of ultrasound on technological properties of chickpea cook- ing water (aquafaba). Journal of Food Engineering, 265, 109688. https://doi.org/10.1016/J.JFOODENG.2019.109688
89. Miano, A. C., Ibarz, A., & Augusto, P. E. D. (2016). Mechanisms for improving mass transfer in food with ultrasound technology: Describing the phenomena in two model cases. Ultrasonics Sono- chemistry, 29, 413–419. https://doi.org/10.1016/J.ULTSONCH.2015.10.020
90. Miano, A. C., Ibarz, A., & Augusto, P. E. D. (2017). Ultrasound tech- nology enhances the hydration of corn kernels without affecting their starch properties. Journal of Food Engineering, 197, 34–43. https://doi.org/10.1016/J.JFOODENG.2016.10.024
91. Munekata, P. E. S., Domínguez, R., Pateiro, M., & Lorenzo, J. M. (2020). Influence of plasma treatment on the polyphenols of food products—A review. Foods, 9(7), 929. https://doi.org/10.3390/ FOODS9070929
92. Nath, K. G., Pandiselvam, R., & Sunil, C. K. (2023). High-pressure processing: Effect on textural properties of food- A review. Jour nal of Food Engineering, 351, 111521. https://doi.org/10.1016/J. JFOODENG.2023.111521
93. Nwachukwu, I. D., & Aluko, R. E. (2021). CHAPTER 1: Food pro- tein structures, functionality and product development. In Food Chemistry, Function and Analysis: Vol. 2021-January (27). Nutri- tional signaling pathway activities in obesity and diabetes (pp. 1–33). https://doi.org/10.1039/9781839163425-00001
94. Oey, I., Duvetter, T., Sila, D. N., Van Eylen, D., Van Loey, A., & Hendrickx, M. (2008). High pressure processing to optimise the quality of in-pack processed fruit and vegetables. In In-pack pro- cessed foods: Improving quality (pp. 338–357). Elsevier. https://doi. org/10.1533/9781845694692.4.338
95. Ogundele, O. M., & Kayitesi, E. (2019). Influence of infrared heating processing technology on the cooking characteristics and func- tionality of African legumes: A review. Journal of Food Science and Technology, 56(4), 1669. https://doi.org/10.1007/S13197-019-03661-5
96. Oke, A. B., & Baik, O. D. (2022). Role of moisture content, tem- perature, and frequency on dielectric behaviour of red lentil and Kabuli chickpea in relation to radio frequency heating. Applied Food Research, 2(1), 100046. https://doi.org/10.1016/J. AFRES.2022.100046
97. Oyeyinka, S. A., Oyedeji, A. B., Ogundele, O. M., Adebo, O. A., Njobeh, P. B., & Kayitesi, E. (2021). Infrared heating under opti- mized conditions enhanced the pasting and swelling behaviour of cowpea starch. International Journal of Biological Macromolecules, 184, 678–688. https://doi.org/10.1016/J.IJBIOMAC.2021.06.129
98. Pan, C., Ishizaki, S., Nagashima, Y., & Watabe, S. (2019). Functional and structural properties of red color-related pigment-binding pro- tein from the shell of Litopenaeus vannamei. Journal of the Science of Food and Agriculture, 99(4), 1719–1727. https://doi.org/10.1002/ JSFA.9361
99. Pandiselvam, R., Kothakota, A., & Manikantan, M. R. (2022). Food processing and implications to the textural, structural, and rhe- ological characteristics of food. Journal of Texture Studies, 53(6), 707–708. https://doi.org/10.1111/JTXS.12732
100. Pandiselvam, R., Singh, A., Agriopoulou, S., Sachadyn-Król, M., Aslam, R., Gonçalves Lima, C. M., Khanashyam, A. C., Kothakota, A., Atakan, O., Kumar, M., Mathanghi, S. K., & Mousavi Khaenegah, A. (2022). A comprehensive review of impacts of ozone treatment on textural properties in different food products. Trends in Food Science & Technology, 127, 74–86. https://doi.org/ 10.1016/J.TIFS.2022.06.008
101. Pandiselvam, R., Tak, Y., Olum, E., Sujayasree, O. J., Tekgül, Y., Çalışkan Koç, G., Kaur, M., Nayi, P., Kothakota, A., & Kumar, M. (2022). Advanced osmotic dehydration techniques combined with emerging drying methods for sustainable food production: Impact on bioactive components, texture, color, and sensory properties of food. Journal of Texture Studies, 53(6), 737–762. https://doi.org/10. 1111/JTXS.12643
102. Paramita, V. D., Panyoyai, N., & Kasapis, S. (2020). Molecular func- tionality of plant proteins from low- to high-solid systems with ligand and co-solute. International Journal of Molecular Sciences, 21(7), 2550. https://doi.org/10.3390/IJMS21072550
103. Pu, H., Wei, J., Wang, L., Huang, J., Chen, X., Luo, C., Liu, S., & Zhang, H. (2017). Effects of potato/wheat flours ratio on mix- ing properties of dough and quality of noodles. Journal of Cereal Science, 76, 236–242. https://doi.org/10.1016/J.JCS.2017.06.020
104. Qiu, S., Abbaspourrad, A., & Padilla-Zakour, O. I. (2021). Changes in the glutinous rice grain and physicochemical properties of its starch upon moderate treatment with pulsed electric field. Foods, 10(2), 395. https://doi.org/10.3390/FOODS10020395
105. Rahman, M. M., & Lamsal, B. P. (2023). Effects of atmospheric cold plasma and high-power sonication on rheological and gelling properties of mung bean protein dispersions. Food Research Inter- national, 163, 112265. https://doi.org/10.1016/J.FOODRES.2022.112265
106. Rocha, C. S., Magnani, M., de Paiva Anciens Ramos, G. L., Bezerril, F. F., Freitas, M. Q., Cruz, A. G., & Pimentel, T. C. (2022). Emerging technologies in food processing: Impacts on sensory characteris- tics and consumer perception. Current Opinion in Food Science, 47, 100892. https://doi.org/10.1016/J.COFS.2022.100892
107. Roknul, A. S. M., Zhang, M., Mujumdar, A. S., & Wang, Y. (2014). A comparative study of four drying methods on drying time and quality characteristics of stem lettuce slices (Lactuca sativa L.). Drying Technology, 32(6), 657–666. https://doi.org/10.1080/07373937.2013.850435
108. Sakare, P., Prasad, N., Thombare, N., Singh, R., & Sharma, S.
109. C. (2020). Infrared drying of food materials: Recent advances. Food Engineering Reviews, 12(3), 381–398. https://doi.org/10.1007/ S12393-020-09237-W/METRICS
110. Sakudo, A., Yagyu, Y., & Onodera, T. (2019). Disinfection and sterilization using plasma technology: Fundamen- tals and future perspectives for biological applications. International Journal of Molecular Sciences, 20(20), 5216. https://doi.org/10.3390/IJMS20205216
111. Sarangapani, C., Yamuna Devi, R., Thirumdas, R., Trimukhe, A. M., Deshmukh, R. R., & Annapure, U. S. (2017). Physico-chemical properties of low-pressure plasma treated black gram. LWT— Food Science and Technology, 79, 102–110. https://doi.org/10.1016/ J.LWT.2017.01.017
112. Shams, R., Manzoor, S., Shabir, I., Dar, A. H., Dash, K. K., Srivastava, S., Pandey, V. K., Bashir, I., & Khan, S. A. (2023). Pulsed electric field-induced modification of proteins: A comprehensive review. Food and Bioprocess Technology, 2023, 1–33. https://doi.org/10. 1007/S11947-023-03117-X
113. Shanker, M. A., Khanashyam, A. C., Pandiselvam, R., Joshi, T. J., Thomas, P. E., Zhang, Y., Rustagi, S., Bharti, S., Thirumdas, R., Kumar, M., & Kothakota, A. (2023). Implications of cold plasma and plasma activated water on food texture—A review. Food Control, 151, 109793. https://doi.org/10.1016/J.FOODCONT.2023.109793
114. Shen, L., Zhu, Y., Wang, L., Liu, C., Liu, C., & Zheng, X. (2019). Improvement of cooking quality of germinated brown rice attributed to the fissures caused by microwave drying. Journal of Food Science and Technology, 56(5), 2737–2749. https://doi.org/10. 1007/S13197-019-03765-Y
115. Sridhar, K., Bouhallab, S., Croguennec, T., Renard, D., & Lechevalier,
116. V. (2022). Application of high-pressure and ultrasound technolo- gies for legume proteins as wall material in microencapsulation: New insights and advances. Trends in Food Science & Technology, 127, 49–62. https://doi.org/10.1016/J.TIFS.2022.07.006
117. Süfer, Ö., DemiR˙ , H., & Sezer, S. (2018). Convective and microwave
118. drying of onion slices regarding texture attributes. Czech Journal of Food Sciences, 36(2), 187–193. https://doi.org/10.17221/310/2017- CJFS
119. Thirumdas, R., Saragapani, C., Ajinkya, M. T., Deshmukh, R. R., & Annapure, U. S. (2016). Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innovative Food Sci- ence & Emerging Technologies, 37, 53–60. https://doi.org/10.1016/J. IFSET.2016.08.009
120. Timm, N. d. S., Lang, G. H., Ferreira, C. D., Pohndorf, R. S., & de Oliveira, M. (2020). Infrared radiation drying of parboiled rice: Influence of temperature and grain bed depth in quality aspects. Journal of Food Process Engineering, 43(4), e13375. https://doi.org/ 10.1111/JFPE.13375
121. Trung, P. T. B., Ngoc, L. B. B., Hoa, P. N., Tien, N. N. T., & Hung,
122. P. V. (2017). Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties. International Journal of Biological Macromolecules, 105, 1071–1078. https://doi.org/10.1016/ J.IJBIOMAC.2017.07.131
123. Vicente, A., Villanueva, M., Caballero, P. A., Muñoz, J. M., & Ronda,
124. F. (2023). Buckwheat grains treated with microwave radiation: Impact on the techno-functional, thermal, structural, and rheo- logical properties of flour. Food Hydrocolloids, 137, 108328. https:// doi.org/10.1016/J.FOODHYD.2022.108328
125. Wang, M. S., Wang, L. H., Bekhit, A. E. D. A., Yang, J., Hou, Z. P.,
126. Wang, Y. Z., Dai, Q. Z., & Zeng, X. A. (2018). A review of sub- lethal effects of pulsed electric field on cells in food processing. Journal of Food Engineering, 223, 32–41. https://doi.org/10.1016/J. JFOODENG.2017.11.035
127. Wu, G., Morris, C. F., & Murphy, K. M. (2017). Quinoa starch char- acteristics and their correlations with the texture profile analysis (TPA) of cooked quinoa. Journal of Food Science, 82(10), 2387–2395. https://doi.org/10.1111/1750-3841.13848
128. Xie, Y., Lin, Y., Li, X., Yang, H., Han, J., Shang, C., Li, A., Xiao, H., & Lu, F. (2022). Peanut drying: Effects of various drying methods on drying kinetic models, physicochemical properties, germina- tion characteristics, and microstructure. Information Processing in Agriculture, 10(4), 447–458. https://doi.org/10.1016/J.INPA.2022.04.004
129. Xu, J., Yang, G., Zhou, D., Fan, L., Xu, Y., Guan, X., Li, R., & Wang, S. (2023). Effect of radio frequency energy on buckwheat quality: An insight into structure and physicochemical properties of protein and starch. International Journal of Biological Macromolecules, 251, 126428. https://doi.org/10.1016/J.IJBIOMAC.2023.126428
130. Yang, C., Zhao, Y., Tang, Y., Yang, R., Yan, W., & Zhao, W. (2018). Radio frequency heating as a disinfestation method against Cor- cyra cephalonica and its effect on properties of milled rice. Journal of Stored Products Research, 77, 112–121. https://doi.org/10.1016/J. JSPR.2018.04.004
131. Yang, Y., Zhou, Y., Lyu, Y., Shao, B., & Xu, Y. (2023). High-throughput multitarget quantitative assay to profile the whole grain-specific phytochemicals alkylresorcinols, benzoxazinoids and avenan- thramides in whole grain and grain-based foods. Food Chemistry, 426, 136663. https://doi.org/10.1016/J.FOODCHEM.2023.136663
132. Yang, Z. H., Zhou, H. M., & Bai, Y. P. (2021). Effects of vacuum ultra- sonic treatment on the texture of vegetarian meatloaves made from textured wheat protein. Food Chemistry, 361, 130058. https://doi. org/10.1016/J.FOODCHEM.2021.130058
133. Zambelli, R. A., Galvão, A. M. M. T., de Mendonça, L. G., Leão, M.V. d. S., Carneiro, S. V., Lima, A. C. S., & Melo, C. A. L. (2018). Effect of different levels of acetic, citric and lactic acid in the cassava starch modification on physical, rheological, thermaand microstructural properties. Food Science and Technology Research, 24(4), 747–754. https://www.academia.edu/57935243/
134. Zeng, F., Gao, Q. Y., Han, Z., Zeng, X. A., & Yu, S. J. (2016). Structural properties and digestibility of pulsed electric field treated waxy rice starch. Food Chemistry, 194, 1313–1319. https://doi.org/10.1016/ J.FOODCHEM.2015.08.104
135. Zhang, B., Tan, C., Zou, F., Sun, Y., Shang, N., & Wu, W. (2022). Impacts of cold plasma technology on sensory, nutritional and safety quality of food: A review. Foods, 11(18), 2818. https://doi.org/ 10.3390/FOODS11182818
136. Zhang, B., Xiao, Y., Wu, X., Luo, F., Lin, Q.,& Ding, Y. (2021). Changes in structural, digestive, and rheological properties of corn, potato, and pea starches as influenced by different ultrasonic treatments. International Journal of Biological Macromolecules, 185, 206–218. https://doi.org/10.1016/J.IJBIOMAC.2021.06.127
137. Zhang, C., Lyu, X., Arshad, R. N., Aadil, R. M., Tong, Y., Zhao, W., & Yang, R. (2023). Pulsed electric field as a promising technology for solid foods processing: A review. Food Chemistry, 403, 134367. https://doi.org/10.1016/J.FOODCHEM.2022.134367
138. Zhang, L., Hu, Y., Wang, X., Abiola Fakayode, O., Ma, H., Zhou, C., Xia, A., & Li, Q. (2021). Improving soaking efficiency of soybeans through sweeping frequency ultrasound assisted by parameters optimization. Ultrasonics Sonochemistry, 79, 105794. https://doi. org/10.1016/J.ULTSONCH.2021.105794
139. Zhang, S., Guan, E., Bian, k., Xu, M., & Zhang, K. (2015). Digestibility of starch and protein during accelerated aging of wheat. Ournal of the Chinese Cereals and Oils Association, 30(2), 11–14.
140. Zhang, Z., Zhang, M., & Zhao, W. (2023). Effect of starch-protein interaction on regulating the digestibility of waxy rice starch under radio frequency treatment with added CaCl2. International Jour- nal of Biological Macromolecules, 232, 123236. https://doi.org/10. 1016/J.IJBIOMAC.2023.123236
141. Zhou, D., Yang, G., Tian, Y., Kang, J., & Wang, S. (2023). Different effects of radio frequency and heat block treatments on multi- scale structure and pasting properties of maize, potato, and pea starches. Food Hydrocolloids, 136, 108306. https://doi.org/10.1016/ J.FOODHYD.2022.108306
142. Zhou, J., Yan, B., Wu, Y., Zhu, H., Lian, H., Zhao, J., Zhang, H., Chen, W., & Fan, D. (2021). Effects of sourdough addition on the textural and physiochemical attributes of microwaved steamed-cake. LWT- Food Science and Technology, 146, 111396. https://doi.org/10.1016/J. LWT.2021.111396
143. Zhou, X., Liu, L., Fu, P., Lyu, F., Zhang, J., Gu, S., & Ding, Y. (2018). Effects of infrared radiation drying and heat pump dry- ing combined with tempering on the quality of long-grain paddy rice. International Journal of Food Science and Technology, 53(11), 2448–2456. https://doi.org/10.1111/IJFS.13834
Supplementary files
Review
For citations:
Burak L.Ch., Sapach A.N. Improving Technological Properties of Food Grain Through the Use of Modern Technologies: Scoping Review. Health, Food & Biotechnology. 2024;6(1). (In Russ.) https://doi.org/10.36107/hfb.2024.i1.s204