Health, Food & Biotechnology

Расширенный поиск

Thermal effect of carbohydrate dissolution in aqueous-organic media

Полный текст:


This work is devoted to the theoretical substantiation of connection of temperature dependence of the solubility of carbohydrates with thermal effect of their dissolution in the water-containing organic solvents that is of great importance for optimization of the technology of their extraction from plant raw materials and further purification and separation by recrystallization. The dependence of the solubility of fructose, glucose, sucrose, and maltose in aqueous isopropanol and acetone at temperatures of 298 К (25 оС) and 275 К (2 оС) from water content in a solvent was studied. The constancy of the mechanism of solubility of carbohydrates in these environments in the given temperature interval is experimentally proved. For the first time based on the equation of Vant-Goff the logical connection of temperature dependence of solubility and thermal effect of solubility of carbohydrates is strictly grounded. The values of the thermal effect that are determined by the experimental data allow calculating the solubility of the studied carbohydrates in the aqueous–organic solvent of different concentration in the temperature range from 2оС to 25 оС.  It has been established that the main contribution to the thermal effect of dissolving carbohydrates is the hydration process. Solvation by molecules of organic solvent practically does not change the value of the specified thermal effect. The significance of determined temperature dependences of the solubility of fructose, glucose and maltose is shown to optimize the technological conditions for the separation of glucose-fructose and glucose-maltose syrups by selective crystallization. 

Об авторе

Yulia V. Danilchuk
Moscow State University of Food Production

Доктор технических наук, профессор, Патентовед

Список литературы

1. Baghbanbashi, M., Pazuki, G. (2014). A new hydrogen bonding local composition based model in obtaining phase behavior of aqueous solutions of sugars. Journal of Molecular Liquids, 195, 47-53.

2. Danilchuk, J. (2016). RU Patent No. 2604288.

3. Danilchuk, V. D. (2009). RU Patent No. 2347818.

4. Danilchuk, Y. (2012). A new technique of fructose production by the method of GFS selective crystallization. Sakhar, 12, 41-49.

5. Danilchuk, Y. (2016). Selective crystallization of maltose by isopropanol and acetone from glucose-maltose syrups. Banat`s Journal of Biotechnology, VII(14), 120-125.

6. Danilchuk, Yu.V., Sidorenko, Yu.I. (2013). Solubility of carbohydrates in aqueous–organic media. Doklady Physical Chemistry, 453, Part 2, 279-281.

7. Gabas, N., Carillon, T., Hiquily N. (1988). Solubilities of D-xylose and D-mannose in water-enthanol mixtures at Journal of Chemical and Engineering Data, 33, 128-120.

8. Konyukhov, V.Yu., Popov, K.I. . (2002). Physicochemical foundations of food industry. A text–book. Moscow: Publishing complex of the Moscow State University of Food Production2.

9. Mohan, M. B. (2016). Solid Liquid Equilibrium of Cellobiose, Sucrose, and Maltose Monohydrate in Ionic Liquids: Experimental and Quantum Chemical Insights. Journal of Chemical & Engineering Data, 61(9), 2923-2932.

10. Montanes, F., Fornari, T., Statevac, R.P., Olanoa A., Ibanez E. (2009). Solubility of carbohydrates in supercritical carbon dioxide with (ethanol +water) cosolvent. The Journal of Supercritical Fluids, 49, 16-22.

11. Peres, A.M., Macedo, E.A. (1997). A modified UNIFAC model for the calculation of thermodynamic properties of aqueous and non-aqueous solutions containing sugars. Fluid Phase Equilibria, 139, 47-74.

12. Peres, A.M., Macedo, E.A. (1997). Measurement and Modeling of Solubilities of d-Glucose in Water/Alcohol and Alcohol/Alcohol Systems. Industrial & Engineering Chemistry Research, 36, 2816-2820.

13. Peres, A.M., Macedo, E.A. (1997). Phase equilibria of d-glucose and sucrose in mixed solvent mixtures: Comparison of UNIQUAC 1-based models. Carbohydrate Research, 303, 135-151.

14. Sapronov, A. (1998). Technology of sugar production. Moscow: Kolos.

15. Simanova, S. (2004). New handbook of chemist and technologist. Chemical equilibrium. Properties of solutions. Saint Petersburg: ANO NPO «Professional».

16. Spiliotis, N., Tassios, D. (2000). A UNIFAC model for phase equilibrium calculations in aqueous and nonaqueous sugar solutions. Fluid Phase Equilibria, 173, 39-55.

17. Teles, A.R.R., Dinis, T.B.V., Capela, E.V., Santos, L.M.N.B.F. (2016). Solubility and solvation of monosaccharides in ionic liquids. Physical Chemistry Chemical Physics, 18, 19722-19730.

18. Tinjacá, D.A., Muñoz, M.M., Jouyban, A., Martínez, F., Acree, W.E. (2019). Equilibrium solubility, preferential solvation and apparent specific volume of sucrose in some {cosolvent (1) + water (2)} mixtures at 298.2 K. Physics and Chemistry of Liquids, 57(2), 259-273.

19. Wang, J., Liu, W., Bai T., Lu, J. (1993). Standard Gibbs Energies of Transfer of some Electrolytes from Water to Aqueous Sucrose Solutions at 298.15 K. Journal of the Chemical Society, Faraday Transactions, 89(11), 1741-1744.

20. Ye, T., Qu, H., Gong, X. . (2017). Measurement and Correlation of Liquid−Liquid Equilibria for the Ternary Systems of Water + DFructose + 1Butanol, Water + DGlucose + 1Butanol, and Water + DGalactose + 1Butanol at (288.2, 303.2 and 318.2) K . Journal of Chemical & Engineering Data, 62(8), 2392-2399.

21. Zhang, D., Montanes, F., Srinivas, K., Fornari, T., Ibanez, E., King, J. W. (2010). Measurement and Correlation of the Solubility of Carbohydrates in Subcritical Water. Industrial & Engineering Chemistry Research, 49, 6691-6698.


Для цитирования:

Danilchuk Y.V. Thermal effect of carbohydrate dissolution in aqueous-organic media. Health, Food & Biotechnology. 2020;2(4):49-59.

For citation:

Danilchuk Yu.V. Thermal effect of carbohydrate dissolution in aqueous-organic media. Health, Food & Biotechnology. 2020;2(4):49-59.

Просмотров: 160

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 2712-7648 (Online)